Chin. Phys. Lett.  2015, Vol. 32 Issue (01): 014208    DOI: 10.1088/0256-307X/32/1/014208
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Junction-Temperature Measurement in InAs/InP(100) Quantum-Dot Lasers
LI Shi-Guo1**, GONG Qian2, CAO Chun-Fang2, WANG Xin-Zhong1, YAN Jin-Yi2, WANG Hai-Long3
1Department of Electronic Communication and Technology, Shenzhen Institute of Information Technology, Shenzhen 518172
2State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystems and Information Technology, Chinese Academy of Sciences, Shanghai 200050
3Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165
Cite this article:   
LI Shi-Guo, GONG Qian, CAO Chun-Fang et al  2015 Chin. Phys. Lett. 32 014208
Download: PDF(697KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report on the measurement of junction temperature of the InAs/InP(100) quantum dot lasers working in the 1.55 μm wavelength region. The measurement is based on analyzing the temperature induced mode shift of the Fabry–Perot cavity. Under pulsed operation mode, more than 20°C junction temperature rise is measured for the quantum-dot (QD) laser when the duty cycle is increased from 1% to 95%. For a reference quantum well laser, the junction temperature rise is obtained as only around 3°C. The large junction temperature rise might be a crucial factor to improve the performance of QD lasers.
Published: 23 December 2014
PACS:  42.62.Fi (Laser spectroscopy)  
  78.67.Hc (Quantum dots)  
  42.55.Px (Semiconductor lasers; laser diodes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/1/014208       OR      https://cpl.iphy.ac.cn/Y2015/V32/I01/014208
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Shi-Guo
GONG Qian
CAO Chun-Fang
WANG Xin-Zhong
YAN Jin-Yi
WANG Hai-Long
[1] Kim J S, Lee J H, Hong S U, Han W S, Kwack H S, Lee C W and Oh D K 2004 IEEE Photon. Technol. Lett. 16 1607
[2] Jang J W, Ryun S H, Lee S H, Lee I C, Jeong W G, Stevenson R, Daniel Dapkus P, Kim N J, Hwang M and Lee S D 2004 Appl. Phys. Lett. 85 3675
[3] Anantathanasarn S, N?tzel R, Van Veldhoven P J, Van Otten F W M, Barbarin Y, Servanton G, De Vries T, Smalbrugge E, Geluk E J, Eijkemans T J, Bente E A J M, Oei Y S, Smit M K and Wolter J H 2006 Appl. Phys. Lett. 89 073115
[4] Poole P J, Kaminska K, Barrios P, Lu Z and Liu J 2009 J. Cryst. Growth 311 1482
[5] Lelarge F, Rousseau B, Dagens B, Poingt F, Pommereau F and Accard A 2005 IEEE Photon. Technol. Lett. 17 1369
[6] Li S G, Gong Q, Lao Y F, He K, Li J, Zhang Y G, Feng S L and Wang H L 2008 Appl. Phys. Lett. 93 111109
[7] Liu J R, Lu Z G, Raymond S, Poole P J, Barrios P J and Poitras D 2008 Opt. Lett. 33 1702
[8] Kim H D, Joeng W G, Lee J H, Yim J S, Lee D, Stevenson R, Dapkus P D, Jang J W and Pyun S H 2005 Appl. Phys. Lett. 87 083110
[9] Alghoraibi I, Rohel T, Piron R, Bertru N, Paranthoen C, Elias G, Nakkar A, Folliot H, Le corre A and Loualiche S 2007 Appl. Phys. Lett. 91 261105
[10] Saito H, Nishi K and Sugou S 2001 Appl. Phys. Lett. 78 267
[11] Xiao X, Lu Y F, Yu F Q and Jin L 2013 Chin. Phys. B 22 077802
[12] Han Y R, Kyong H H, Jung H C, Ok H N and Yong J P 2005 Appl. Phys. Lett. 87 093506
[13] Nan K J, Zhang Y G, He Y J and Li A Z 2002 Semicond. Sci. Technol. 8 135
[14] Nan K J, Zhang Y G, Chen Y Q and Li A Z 2002 Semicond. Sci. Technol. 8 86
[15] Zhu C, Zhang Y G, Li A Z and Zheng Y L 2005 Semicond. Sci. Technol. 20 563
[16] Li S G, Gong Q, Lao Y F, Yang H D, Gao S, Li J, Zhang Y G, Feng S L and Wang H L 2009 Appl. Phys. Lett. 95 251111
[17] Chusseau L, Alibert C, Martin P, Mostafa Skouri E and Bissessur H 1996 Appl. Phys. Lett. 69 1334
[18] Bisaro R, Merenda P and Pearsall T P 1979 Appl. Phys. Lett. 34 100
[19] Li S G, Gong Q, Cao C F, Wang X Z and Wang H L 2012 Physica E 44 1983
[20] Carlin J F, Syrbu A V, Berseth C A, Behrend J, Rudra A and Kapon E 1997 Appl. Phys. Lett. 71 13
Related articles from Frontiers Journals
[1] Canzhu Tan, Fachao Hu, Zhijing Niu, Yuhai Jiang, Matthias Weidemüller, and Bing Zhu. Measurements of Dipole Moments for the $5{s}5{p}\,^3\!{P}_1$–$5{s}n{s}\, ^3\!{S}_1$ Transitions via Autler–Townes Spectroscopy[J]. Chin. Phys. Lett., 2022, 39(9): 014208
[2] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 014208
[3] Ji Li, Liang Chen, Yi-He Chen, Zhi-Chao Liu, Hang Zhang, Mang Feng. Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap[J]. Chin. Phys. Lett., 2020, 37(5): 014208
[4] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 014208
[5] Meng-Han Wang, Jun-Le Qu, Ming Zhu. Partially Overlapped Dual Laser Beams to Reduce Ablation Craters[J]. Chin. Phys. Lett., 2020, 37(1): 014208
[6] Meng-Yan Zeng, Yao Huang, Hu Shao, Miao Wang, Hua-Qing Zhang, Bao-Lin Zhang, Hua Guan, Ke-Lin Gao. Improvement of Stability of $^{40}$Ca$^{+}$ Optical Clock with State Preparation[J]. Chin. Phys. Lett., 2018, 35(7): 014208
[7] Qiang Gao, Wu-Bin Weng, Bo Li, Zhong-Shan Li. Quantitative and Spatially Resolved Measurement of Atomic Potassium in Combustion Using Diode Laser[J]. Chin. Phys. Lett., 2018, 35(2): 014208
[8] Xiu-Mei Wang, Yan-Ling Meng, Ya-Ning Wang, Jin-Yin Wan, Ming-Yuan Yu, Xin Wang, Ling Xiao, Tang Li, Hua-Dong Cheng, Liang Liu. Dick Effect in the Integrating Sphere Cold Atom Clock[J]. Chin. Phys. Lett., 2017, 34(6): 014208
[9] Wei-Min Sun, Qiang Huang, Zong-Jun Huang, Ping-Wen Wang, Jun-Hai Zhang. All-Optical Vector Cesium Magnetometer[J]. Chin. Phys. Lett., 2017, 34(5): 014208
[10] Qi Zhou, Peng-Yuan Chang, Zhong-Zheng Liu, Xiao-Gang Zhang, Chuan-Wen Zhu, Jing-Biao Chen. Cs 5$D_ {5/2}$–$6F$ 728nm Laser Spectroscopy with Single Pumping Laser[J]. Chin. Phys. Lett., 2017, 34(3): 014208
[11] Xiang-Ye Wei, Zhi-Wei Tu, Chang Liu, He-Long Li, Huai-Liang Xu. Differentiation of Positional Isomers of Propyl Alcohols Using Filament-Induced Fluorescence[J]. Chin. Phys. Lett., 2016, 33(05): 014208
[12] Wei Luo, Chuan-Xi Duan. A Broadband Pulsed External-Cavity Quantum Cascade Laser Operating near 6.9μm[J]. Chin. Phys. Lett., 2016, 33(02): 014208
[13] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 014208
[14] WANG Qing, DUAN Jun, QI Xiang-Hui, ZHANG Yin, CHEN Xu-Zong. Improvement of Laser Frequency Stabilization for the Optical Pumping Cesium Beam Standard[J]. Chin. Phys. Lett., 2015, 32(5): 014208
[15] WU Hua, LI Chong, HAN Min-Fu, WANG Wen-Juan, SHI Lei, LIU Qiao-Li, LIU Bai, DONG Jian, GUO Xia. Polarization-Stable 980 nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture[J]. Chin. Phys. Lett., 2015, 32(4): 014208
Viewed
Full text


Abstract