FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Observation of Self-Frequency Doubling in Diode-Pumped Mode-Locked Nd-Doped La3Ga5SiO14 Laser |
LIU Jia-Xing1, WANG Zhao-Hua1**, TIAN Wen-Long2, WANG Qing3, ZHANG Zhi-Guo1, WEI Zhi-Yi1**, YU Hao-Hai4, ZHANG Huai-Jin4, WANG Ji-Yang4 |
1Beijing National Laboratory for Condensed Matter Physics, and the Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071 3Department of Opto-Electronics, Beijing Institute of Technology, Beijing 100081 4State Key Laboratory of Crystal Material and Institute of Crystal Material, Shandong University, Jinan 250100
|
|
Cite this article: |
LIU Jia-Xing, WANG Zhao-Hua, TIAN Wen-Long et al 2015 Chin. Phys. Lett. 32 014206 |
|
|
Abstract A diode-pumped passively mode-locked Nd-doped La3Ga5SiO14 (Nd:LGS) laser is realized by using a semiconductor saturable absorber mirror. With the pump power of 2 W, we obtain a 532 nm self-frequency doubling (SFD) laser together with a 10.9 ps fundamental laser at the repetition rate of 173.7 MHz. To the best of our knowledge, it is the first time for self-frequency doubling in the diode-pumped mode-locked Nd:LGS laser. Benefited from the diode lasers and its self-frequency doubling property, Nd:LGS could be a potential candidate for compact, stable and cheap ultrafast green laser sources.
|
|
Published: 23 December 2014
|
|
PACS: |
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
|
|
|
[1] Bohm J, Heimann R B, Hengst M, Roewer R and Schindler J 1999 J. Cryst. Growth 204 128 [2] Giordano V, Kersale Y and Boy J J 2001 Appl. Phys. Lett. 78 2545 [3] Stade J, Bohaty L, Hengst M and Heimann R B 2002 Cryst. Res. Technol. 37 1113 [4] Yin X, Wang J Y, Zhang H J, Zhang S J, Han R J and Chang T X 2002 Jpn. J. Appl. Phys. 41 7419 [5] Kaminskii A A, Mill B V, Khodzhabagyan G G, Konstantinova A F, Okorachkov A I and Silvestrova I M 1983 Phys. Status Solidi A 80 387 [6] Kong H K, Wang J Y, Zhang H J, Yin X, Zhang S J, Liu Y G, Cheng X F, Gao L, Hu X B and Jiang M H 2003 J. Cryst. Growth 254 360 [7] Fu X H, Che Y and Li Y L 2011 Laser Phys. 21 995 [8] Yu Y G, Wang J Y, Zhang H J, Wang Z P, Yu H H and Jiang M H 2009 Opt. Lett. 34 467 [9] Feng D W, Feng Y and Zhang G W 2012 Laser Phys. 22 885 [10] Wang Q, Wei Z Y, Zhang Y D, Zhang Z G, Yu H H, Zhang H J, Wang J Y, Gao M W, Gao C Q and Wang Z L 2011 Opt. Lett. 36 1770 [11] Wang Q, Wei Z Y, Liu J X, Wang Z H, Zhang Z G, Zhang H J and Wang J Y 2013 IEEE Conference on Lasers and Electro-Optics Pacific Rim ThA3-7 [12] Maker P D, Terhune R W, Niseuoff N and Savage C M 1962 Phys. Rev. Lett. 8 21 [13] Dou S X, Jiang M H, Shao Z S and Tao X T 1989 Appl. Phys. Lett. 54 1101 [14] Komatsu R, Sugawara T and Uda S 1997 Jpn. J. Appl. Phys. 36 6159 [15] Boulanger B, Feve J P, Marnier G, Bonnin C, Villeval P and Zondy J J 1997 J. Opt. Soc. Am. B 14 1380 [16] Yan J, Li H W, Yang X L, Xie S W and Sun Z R 2000 Laser J. 21 14 [17] Yan J, Yang X L, Li H W, Xie S W and Ding L E 2000 Acta Opt. Sin. 20 1597 (in Chinese) [18] Cong Z H, Tang D Y, Tan W D, Zhang J, Luo D W, Xu C W, Xu X D, Li D Z, Xu J, Zhang X Y and Wang Q P 2011 Opt. Commun. 284 1967 [19] Agnesi A, Greborio A, Pirzio F, Reali G, Au J A and Guandalini A 2012 Opt. Express 20 10077 [20] Agnesi A, Prizio F, Tartara L, Ugolotti E, Zhang H, Wang J, Yu H and Petrov V 2014 Laser Phys. Lett. 11 035802 [21] Qin Z P, Xie G Q, Ma J, Ge W Y, Yuan P, Qian L J, Su L B, Jiang D P, Ma F K, Zhang Q, Cao Y X and Xu J 2014 Opt. Lett. 39 1737 [22] Wang J Y, Yu H H, Zhang H J, Li J, Zong N and Xu Z Y 2011 Prog. Phys. 31 91 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|