Chin. Phys. Lett.  2015, Vol. 32 Issue (01): 014206    DOI: 10.1088/0256-307X/32/1/014206
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Observation of Self-Frequency Doubling in Diode-Pumped Mode-Locked Nd-Doped La3Ga5SiO14 Laser
LIU Jia-Xing1, WANG Zhao-Hua1**, TIAN Wen-Long2, WANG Qing3, ZHANG Zhi-Guo1, WEI Zhi-Yi1**, YU Hao-Hai4, ZHANG Huai-Jin4, WANG Ji-Yang4
1Beijing National Laboratory for Condensed Matter Physics, and the Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071
3Department of Opto-Electronics, Beijing Institute of Technology, Beijing 100081
4State Key Laboratory of Crystal Material and Institute of Crystal Material, Shandong University, Jinan 250100
Cite this article:   
LIU Jia-Xing, WANG Zhao-Hua, TIAN Wen-Long et al  2015 Chin. Phys. Lett. 32 014206
Download: PDF(574KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A diode-pumped passively mode-locked Nd-doped La3Ga5SiO14 (Nd:LGS) laser is realized by using a semiconductor saturable absorber mirror. With the pump power of 2 W, we obtain a 532 nm self-frequency doubling (SFD) laser together with a 10.9 ps fundamental laser at the repetition rate of 173.7 MHz. To the best of our knowledge, it is the first time for self-frequency doubling in the diode-pumped mode-locked Nd:LGS laser. Benefited from the diode lasers and its self-frequency doubling property, Nd:LGS could be a potential candidate for compact, stable and cheap ultrafast green laser sources.
Published: 23 December 2014
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.60.Fc (Modulation, tuning, and mode locking)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/1/014206       OR      https://cpl.iphy.ac.cn/Y2015/V32/I01/014206
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Jia-Xing
WANG Zhao-Hua
TIAN Wen-Long
WANG Qing
ZHANG Zhi-Guo
WEI Zhi-Yi
YU Hao-Hai
ZHANG Huai-Jin
WANG Ji-Yang
[1] Bohm J, Heimann R B, Hengst M, Roewer R and Schindler J 1999 J. Cryst. Growth 204 128
[2] Giordano V, Kersale Y and Boy J J 2001 Appl. Phys. Lett. 78 2545
[3] Stade J, Bohaty L, Hengst M and Heimann R B 2002 Cryst. Res. Technol. 37 1113
[4] Yin X, Wang J Y, Zhang H J, Zhang S J, Han R J and Chang T X 2002 Jpn. J. Appl. Phys. 41 7419
[5] Kaminskii A A, Mill B V, Khodzhabagyan G G, Konstantinova A F, Okorachkov A I and Silvestrova I M 1983 Phys. Status Solidi A 80 387
[6] Kong H K, Wang J Y, Zhang H J, Yin X, Zhang S J, Liu Y G, Cheng X F, Gao L, Hu X B and Jiang M H 2003 J. Cryst. Growth 254 360
[7] Fu X H, Che Y and Li Y L 2011 Laser Phys. 21 995
[8] Yu Y G, Wang J Y, Zhang H J, Wang Z P, Yu H H and Jiang M H 2009 Opt. Lett. 34 467
[9] Feng D W, Feng Y and Zhang G W 2012 Laser Phys. 22 885
[10] Wang Q, Wei Z Y, Zhang Y D, Zhang Z G, Yu H H, Zhang H J, Wang J Y, Gao M W, Gao C Q and Wang Z L 2011 Opt. Lett. 36 1770
[11] Wang Q, Wei Z Y, Liu J X, Wang Z H, Zhang Z G, Zhang H J and Wang J Y 2013 IEEE Conference on Lasers and Electro-Optics Pacific Rim ThA3-7
[12] Maker P D, Terhune R W, Niseuoff N and Savage C M 1962 Phys. Rev. Lett. 8 21
[13] Dou S X, Jiang M H, Shao Z S and Tao X T 1989 Appl. Phys. Lett. 54 1101
[14] Komatsu R, Sugawara T and Uda S 1997 Jpn. J. Appl. Phys. 36 6159
[15] Boulanger B, Feve J P, Marnier G, Bonnin C, Villeval P and Zondy J J 1997 J. Opt. Soc. Am. B 14 1380
[16] Yan J, Li H W, Yang X L, Xie S W and Sun Z R 2000 Laser J. 21 14
[17] Yan J, Yang X L, Li H W, Xie S W and Ding L E 2000 Acta Opt. Sin. 20 1597 (in Chinese)
[18] Cong Z H, Tang D Y, Tan W D, Zhang J, Luo D W, Xu C W, Xu X D, Li D Z, Xu J, Zhang X Y and Wang Q P 2011 Opt. Commun. 284 1967
[19] Agnesi A, Greborio A, Pirzio F, Reali G, Au J A and Guandalini A 2012 Opt. Express 20 10077
[20] Agnesi A, Prizio F, Tartara L, Ugolotti E, Zhang H, Wang J, Yu H and Petrov V 2014 Laser Phys. Lett. 11 035802
[21] Qin Z P, Xie G Q, Ma J, Ge W Y, Yuan P, Qian L J, Su L B, Jiang D P, Ma F K, Zhang Q, Cao Y X and Xu J 2014 Opt. Lett. 39 1737
[22] Wang J Y, Yu H H, Zhang H J, Li J, Zong N and Xu Z Y 2011 Prog. Phys. 31 91
Related articles from Frontiers Journals
[1] Jing Zhao, Jinlei Liu, Xiaowei Wang, Jianmin Yuan, and Zengxiu Zhao. Real-Time Observation of Electron-Hole Coherence Induced by Strong-Field Ionization[J]. Chin. Phys. Lett., 2022, 39(12): 014206
[2] Yue Lang, Zhaoyang Peng, and Zengxiu Zhao. Multiband Dynamics of Extended Harmonic Generation in Solids under Ultraviolet Injection[J]. Chin. Phys. Lett., 2022, 39(11): 014206
[3] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 014206
[4] Xiaoli Guo, Cheng Jin, Ziqiang He, Song-Feng Zhao, Xiao-Xin Zhou, and Ya Cheng. Retrieval of Angle-Dependent Strong-Field Ionization by Using High Harmonics Generated from Aligned N$_{2}$ Molecules[J]. Chin. Phys. Lett., 2021, 38(12): 014206
[5] Hongdan Zhang, Xiwang Liu, Facheng Jin, Ming Zhu, Shidong Yang, Wenhui Dong, Xiaohong Song, and Weifeng Yang. Coherent Control of High Harmonic Generation Driven by Metal Nanotip Photoemission[J]. Chin. Phys. Lett., 2021, 38(6): 014206
[6] Jin Zhang, Lin-Qiang Hua, Zhong Chen, Mu-Feng Zhu, Cheng Gong, and Xiao-Jun Liu. Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm[J]. Chin. Phys. Lett., 2020, 37(12): 014206
[7] Fan Xiao , Xiaohui Fan , Li Wang , Dongwen Zhang , Jianhua Wu , Xiaowei Wang, and Zengxiu Zhao. Generation of Intense Sub-10 fs Pulses at 385 nm[J]. Chin. Phys. Lett., 2020, 37(11): 014206
[8] Jing-Jie Hao, Wei Tu, Nan Zong, Yu Shen, Shen-Jin Zhang, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. Coaxial Multi-Wavelength Generation in YVO$_{4}$ Crystal with Stimulated Raman Scattering Excited by a Picosecond-Pulsed 1064 Laser[J]. Chin. Phys. Lett., 2020, 37(4): 014206
[9] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 014206
[10] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 014206
[11] Li Zhao, Zhi-Jing Chen, Hai-Bo Sang, Bai-Song Xie. Spatial Characteristics of Thomson Scattering Spectra in Laser and Magnetic Fields[J]. Chin. Phys. Lett., 2019, 36(7): 014206
[12] Jie Shao, Cai-Ping Zhang, Jing-Chao Jia, Jun-Lin Ma, Xiang-Yang Miao. Effect of Carrier Envelope Phase on High-Order Harmonic Generation from Solid[J]. Chin. Phys. Lett., 2019, 36(5): 014206
[13] Bin Zhang, Jian Zhao, Zeng-Xiu Zhao. Multi-Electron Effects in Attosecond Transient Absorption of CO Molecules[J]. Chin. Phys. Lett., 2018, 35(4): 014206
[14] Tian-Run Feng, Hui-Zhen Kang, Lei Feng, Jia Yang, Tian-Hao Zhang, Feng Song, Jing-Jun Xu, Jian-Guo Tian, L. I. Ivleva. Noncolinear Second-Harmonic Generation Pairs and Their Scatterings in Nd$^{3+}$:SBN Crystals with Needle-Like Ferroelectric Domains[J]. Chin. Phys. Lett., 2018, 35(3): 014206
[15] Xia-Zhi Li, Hong-Bin Zhuo, De-Bin Zou, Shi-Jie Zhang, Hong-Yu Zhou, Na Zhao, Yue Lang, De-Yao Yu. High-Order-Harmonic Generation from a Relativistic Circularly Polarized Laser Interacting with Over-Dense Plasma Grating[J]. Chin. Phys. Lett., 2017, 34(9): 014206
Viewed
Full text


Abstract