CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Optical Properties of Plate-Shaped ZnO Nanocrystals Grown by a Facile and Environmentally Friendly Molten Salt Method |
WANG Wen-Zhong**, LIANG Yu-Jie, SHI Hong-Long, ZHANG Gu-Ling |
School of Science, Minzu University of China, Beijing 100081
|
|
Cite this article: |
WANG Wen-Zhong, LIANG Yu-Jie, SHI Hong-Long et al 2014 Chin. Phys. Lett. 31 097802 |
|
|
Abstract Plate-shaped ZnO nanocrystals are prepared by a facile and environmentally friendly molten salt method, in which Zn5(CO3)2(OH)6 nanorods are first synthesized via a facile one-step, solid-state reaction route at room temperature and then decomposed in NaCl flux. Photoluminescence property demonstrates that the as-prepared plate-shaped ZnO nanocrystals exhibit a strong blue emission centered at about 483 nm. Raman scattering spectrum reveals that the as-prepared plate-shaped ZnO nanocrystals have the oxygen deficiency, which can be confirmed by the appearance of oxygen-deficiency-related vibrational mode at 583 cm?1 in the Raman spectrum. The oxygen deficiency existing in the plate-shaped ZnO nanocrystals results in the formation of the oxygen vacancy, which is most likely responsible for the strong blue emission of the plate-shaped ZnO nanocrystals. These new plate-shaped ZnO nanocrystals with strong blue emission are expected to show considerable potential applications in luminescence, lasing and optoelectronic devices.
|
|
|
|
PACS: |
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
81.07.Bc
|
(Nanocrystalline materials)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
|
|
|
[1] Chen Y, Bagnall D M, Koh H, Park K, Hiraga K, Zhu Z and Yao T 1998 J. Appl. Phys. 84 3912 [2] Wang X D, Summers C J and Wang Z L 2004 Nano Lett. 4 423 [3] Huang M, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897 [4] Cao B Q, Cai W P and Zeng H B 2006 Appl. Phys. Lett. 88 161101 [5] Banerjee D, Lao J Y, Wang D Z, H uang J Y, Steeves D, Kimball B and Ren Z F 2004 Nanotechnology 15 404 [6] Zhou X, Gu S L, Wu Z, Zhu S M, Ye J D, Liu S M, Zhang R, Shi Y and Zheng Y D 2006 Appl. Surf. Sci. 253 2226 [7] Liu K W, Chen R, Xing G Z, Wu T and Sun H D 2010 Appl. Phys. Lett. 96 023111 [8] Zhang L C, Ruan Y F, Wang D L and Qiu C X 2011 Cryst. Res. Technol. 46 405 [9] Lin S S, Chen B G, Xiong W, Yang Y, He H P and Luo J 2012 Opt. Express 20 706 [10] Vanheusden K, Seager C H, Warren W L, Tallant D R and Voigt J A 1996 Appl. Phys. Lett. 68 403 [11] Cheng W D, Wu D, Zou X G and Xiao T 2006 J. Appl. Phys. 100 054311 [12] Garces N Y, Wang L, Bai L, Giles N C, Halliburton L E and Cantwell G 2002 Appl. Phys. Lett. 81 622 [13] Samanta P K, Patra S K, Ghosh A and Roy Chaudhuri P 2009 Int. J. Nanosci. Nanotechnol. 1 81 [14] Han L L, Cui L, Wang W H, Wang J L and Du X W 2012 Semiconductor Sci. Technol. 27 065020 [15] Yan B, Chen R, Zhou W W, Zhang J X, Sun H D, Gong H and Yu T 2010 Nanotechnology 21 445706 [16] Sahoo S, Harma G L S and Katiyar R S 2012 J. Raman Spectrosc. 43 72 [17] Ashkenov N, Mbenkum B N, Bundesmann C, Riede V, Lorenz M, Spemann D, Kaidashev E M, Kasic A, Schubert M, Grund-mann M, Wagner G, Neumann H, Darakchieva V, Arwin H and Monemar B 2003 J. Appl. Phys. 93 126 [18] Fonoberov V A and Balandin A A 2004 Phys. Rev. B 70 233205 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|