CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Efficient Phosphorescent Organic Light Emitting Diodes Using F4TCNQ as the Indium-Tin-Oxide Modification Layer |
JIAO Bo, ZHU Xiao-Bo, WU Zhao-Xin**, YU Yue, HOU Xun |
Shaanxi Key Laboratory of Photonics Technology for Information, Department of Electronic Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049
|
|
Cite this article: |
JIAO Bo, ZHU Xiao-Bo, WU Zhao-Xin et al 2014 Chin. Phys. Lett. 31 097801 |
|
|
Abstract A phosphorescent organic light emitting diode by using tetrafluorotetracyanoquinodimethane (FTCNQ) as the indium-tin-oxide modification layer and 4,4'-bis(carbazol-9-yl)biphenyl (CBP) as the hole transporting layer is reported. CBP doped with a green phosphorescent dopant, tris(2-(p-tolyl)pyridine) iridium(III) (Ir(mppy)3) is used as the emission layer in this device, and the maximum current efficiency of 31.3 cd/A is achieved. Furthermore, low efficiency roll-off of 10.4% is observed with device luminance increasing from 100 cd/m2 (29.7 cd/A) to 10000 cd/m2 (26.5 cd/A). It is demonstrated that a charge-generation area is formed at F4TCNQ/CBP interface, which will benefit hole injection into the hole transporting layer. Moreover, use of the CBP hole transporting layer will benefit the low efficiency roll-off by broadening triplet exciton formation, as well as by avoiding accumulation of unbalanced carrier at the hole transporting layer/emission layer interface.
|
|
|
|
|
|
|
|
[1] Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E and Forrest S R 1998 Nature 395 151 [2] Baldo M A, Adachi C and Forrest S R 2000 Phys. Rev. B 62 10967 [3] Giebink N C and Forrest S R 2008 Phys. Rev. B 77 235215 [4] Reineke S, Walzer K and Leo K 2007 Phys. Rev. B 75 125328 [5] Song D D, Zhao S L, Luo Y C and Aziz H 2010 Appl. Phys. Lett. 97 243304 [6] Zeng L C, Lee T Y H, Merkel P B and Chen S H 2009 J. Mater. Chem. 19 8772 [7] Park T J, Jeon W S, Park J J, Kim S Y, Lee Y K, Jang J, Kwon J H and Pode R 2008 Appl. Phys. Lett. 92 113308 [8] Tokito S, Iijima T, Suzuri Y, Kita H, Tsuzuki T and Sato F 2003 Appl. Phys. Lett. 83 569 [9] Wang Z B, Helander M G, Qiu J, Puzzo D P, Greiner M T, Liu Z W and Lu Z H 2011 Appl. Phys. Lett. 98 073310 [10] Gao C H, Cai S D, Gu W, Zhou D Y, Wang Z K and Liao L S 2012 ACS Appl. Mater. Interfaces 4 5211 [11] Wang Z B, Helander M G, Qiu J, Liu Z W, Greiner M T and Lu Z H 2010 J. Appl. Phys. 108 024510 [12] Zhang H M, Choy W C H and Li K 2010 IEEE Trans. Electron Devices 57 125 [13] Matsushima T and Adachi C 2006 Appl. Phys. Lett. 89 253506 [14] Koch N, Duhm S, Rabe J P, Vollmer A and Johnson R L 2005 Phys. Rev. Lett. 95 237601 [15] Rana O, Srivastava R, Chauhan G, Zulfequar M, Husain M, Srivastava P C and Kamalasanan M N 2012 Phys. Status Solidi A 209 2539 [16] Jiao B, Wu Z X, Dai Y, Wang D D and Hou X 2009 J. Phys. D: Appl. Phys. 42 205108 [17] Jiao B, Wu Z X, Yan X W and Hou X 2010 Appl. Phys. A: Mater. Sci. Process. 98 239 [18] Jiao B, Wu Z X, He Q, Tian Y, Mao G L and Hou X 2010 J. Phys. D: Appl. Phys. 43 035101 [19] Zhou X, Blochwitz J, Pfeiffer M, Nollau A, Fritz T and Le Ko 2001 Adv. Funct. Mater. 11 310 [20] Liang C J, Wang Y and Yi L X 2008 Chin. Phys. Lett. 25 1832 [21] Dong M S, Wu X M, Hua Y L, Qi Q J and Yin S G 2010 Chin. Phys. Lett. 27 127802 [22] Matsushima H, Naka S, Okada H and Onnagawa H 2005 Curr. Appl. Phys. 5 305 [23] Zhang S T, Wang Z J, Zhao J M, Zhan Y Q, Wu Y, Zhou Y C, Ding X M and Hou X Y 2004 Appl. Phys. Lett. 84 2916 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|