Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 098101    DOI: 10.1088/0256-307X/31/9/098101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Morphology and Microstructure of InAs Nanowires on GaAs Substrates Grown by Molecular Beam Epitaxy
SHI Sui-Xing1, LU Zhen-Yu1, ZHANG Zhi2, ZHOU Chen1, CHEN Ping-Ping1**, ZOU Jin2,3
1National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083
2Materials Engineering, University of Queensland, QLD 4072, Australia
3Center for Microscopy and Microanalysis, University of Queensland, QLD 4072, Australia
Cite this article:   
SHI Sui-Xing, LU Zhen-Yu, ZHANG Zhi et al  2014 Chin. Phys. Lett. 31 098101
Download: PDF(878KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We successfully grow high-quality wurtzite InAs nanowires on GaAs substrates. The influences of growth temperature and orientations of GaAs substrates on the morphology and microstructure of InAs nanowires are also investigated. We find that a low growth temperature (330°C) is beneficial to the synthesis of uniform defect-free InAs nanowires. Meanwhile, InAs nanowires along ?111?B direction are always dominated despite the variation of GaAs substrate orientations.
PACS:  81.05.Ea (III-V semiconductors)  
  81.07.Gf (Nanowires)  
  81.10.Bk (Growth from vapor)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/098101       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/098101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHI Sui-Xing
LU Zhen-Yu
ZHANG Zhi
ZHOU Chen
CHEN Ping-Ping
ZOU Jin
[1] Lu W and Lieber C M 2007 Nat. Mater. 6 841
[2] Dick K A 2008 Prog. Cryst. Growth Charact. Mater. 54 138
[3] Hayden O, Agarwal R and Lu W 2008 Nano Today 3(5-6) 12
[4] Holloway G W, Song Y, Haapamaki C M, LaPierre R R and Baugh J 2013 Appl. Phys. Lett. 102 043115
[5] Tomioka K, Mohan P, Noborisaka J, Hara S, Motohisa J and Fukui T 2007 J. Cryst. Growth 298 644
[6] Akabori M, Sladek K, Hardtdegen H, Schapers T and Grutzmacher D 2009 J. Cryst. Growth 311 3813
[7] Gupta N, Song Y P, Holloway G W, Sinha U, Haapamaki C M, LaPierre R R and Baugh J 2013 Nanotechnology 24 225202
[8] Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89
[9] Dick K A, Deppert K, Martensson T, Mandl B, Samuelson L and Seifert W 2005 Nano Lett. 5 761
[10] Viti L, Vitiello M S, Ercolani D, Sorba L and Tredicucci A 2012 Nanoscale Res. Lett. 7 1
[11] Mandl B, Dey A W, Stangl J, Cantoro M, Wernersson L E, Bauer G, Samuelson L, Deppert K and Thelander C 2011 J. Cryst. Growth 334 51
[12] Tchernycheva M, Travers L, Patriarche G, Glas F, Harmand J C, Cirlin G E and Dubrovskii V G 2007 J. Appl. Phys. 102 094313
[13] Grap T, Rieger T, Blomers C, Schapers T, Grutzmacher D and Lepsa M I 2013 Nanotechnology 24 35601
[14] Rolland C, Caroff P, Coinon C, Wallart X and Leturcq R 2013 Appl. Phys. Lett. 102 223105
[15] Lehmann S, Wallentin J, Jacobsson D, Deppert K and Dick K A 2013 Nano Lett. 13 4099
[16] Dubrovskii V G, Sibirev N V, Harmand J C, and Glas F 2008 Phys. Rev. B 78 235301
[17] Dick K A, Caroff P, Bolinsson J, Messing M E, Johansson J, Deppert K, Wallenberg L R and Samuelson L 2010 Semicond. Sci. Technol. 25 024009
[18] Lu Z Y, Chen P P, Liao Z M, Shi S X, Sun Y, Li T X, Zhang Y H, Zou J and Lu W 2013 J. Alloys Compd. 580 82
[19] Mandl B, Stangl J, Martensson T, Mikkelsen A, Eriksson J, Karlsson L S, Bauer G, Samuelson L and Seifert W 2006 Nano Lett. 6 1817
[20] Johansson J, Karlsson L S, Dick K A, Bolinsson J, Wacaser B A, Deppert K and Samuelson L 2009 Cryst. Growth Des. 9 766
[21] Prokes S M, Park H D and Glembocki O J 2006 Proc. SPIE–Int. Soc. For Opt. Eng. 6370 63700Q
[22] Fortuna S A and Li X 2010 Semicond. Sci. Technol. 25 024005
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 098101
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 098101
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 098101
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 098101
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 098101
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 098101
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 098101
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 098101
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 098101
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 098101
[11] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 098101
[12] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 098101
[13] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 098101
[14] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 098101
[15] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 098101
Viewed
Full text


Abstract