Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 098401    DOI: 10.1088/0256-307X/31/9/098401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Insights of Unconventionally Long Exposure Time in Atomic Layer Deposition Al2O3 to Modify SnO2 Photoanode of Dye-Sensitized Solar Cells
DONG Wan, WANG Zheng-Duo**, YANG Li-Zhen, MENG Tao, CHEN Qiang
Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600
Cite this article:   
DONG Wan, WANG Zheng-Duo, YANG Li-Zhen et al  2014 Chin. Phys. Lett. 31 098401
Download: PDF(660KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Porous SnO2 photoanodes coated by alumina through atomic layer deposition technology are reported. It is found that when the dosing time of precursor is extended over 11 s, the 125% maximum increase of cell efficiency is achieved. It is believed that besides the interfacial charge recombination being efficiently suppressed by this ultra-thin coating, the increased absorption of dyes and elimination of the high density of monoenergetic surface states on SnO2 might play a positive role in improving the cell efficiency. The reason is that a long exposure time of precursor can guarantee the 100% coverage of alumina on porous SnO2, which is further explained by a built three-step model. Then we conclude that for a high cell efficiency in porous photoelectrode a long exposure time is indispensable.
PACS:  84.60.Jt (Photoelectric conversion)  
  84.60.Bk (Performance characteristics of energy conversion systems; figure of merit)  
  82.45.Yz (Nanostructured materials in electrochemistry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/098401       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/098401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DONG Wan
WANG Zheng-Duo
YANG Li-Zhen
MENG Tao
CHEN Qiang
[1] Senevirathnaa M K I, Pitigala P K D D P, Premalal E V A and Tennakone K 2007 Sol. Energy Mater. Sol. Cells 91 544
[2] Zhang X T, Liu H W, Taguchi T, Meng Q B, Sato O and Fujishima A 2004 Sol. Energy Mater. Sol. Cells 81 197
[3] Kontos A I, Kontos A G, Tsoukleris D S, Bernard M C, Spyrellis N and Falaras P 2008 J. Mater. Process Technol. 196 243
[4] Murakami T N, Kijitori Y, Kawashima N and Miyasaka T J 2004 Photochem. Photobiol. 164 187
[5] Kim J, Kang S H, Kim H S and Sung Y 2010 Langmuir 26 2864
[6] Choi S C and Lee H S 2012 Phys. Scr. 85 025801
[7] Tien T C, Pan F M, Wang L P, Lee C H, Tung Y L, Tsai S Y, Lin C, Tsai F Y and Chen S J 2009 Nanotechnology 20 305201
[8] Dahoudi N A, Zhang Q F and Cao G Z 2012 Int. J. Photoenergy 2012 1
[9] Li C Y, Wang J B and Wang Y Q 2012 Chin. Phys. B 21 098102
[10] Huang Q L, Li F, Gong Y, Luo J H, Yang S Z, Luo Y H, Li D M, Bai X D and Meng Q B 2013 J. Phys. Chem. C 117 10965
[11] Lin C, Tsai F Y, Lee M H, Lee C H, Tien T C, Wang L P and Tsai S Y 2009 J. Mater. Chem. 19 2999
[12] Shi J J, Dong W, Xu Y Z, Li C H, Lv S T, Zhu L F, Dong J, Luo Y H, Li D M, Meng Q B and Chen Q 2013 Chin. Phys. Lett. 30 128402
[13] Sung S D, Lim I, Kim M S and Lee W I 2013 Bull. Korean Chem. Soc. 34 411
[14] Kay A and Gratzel M 2002 Chem. Mater. 14 2930
[15] Vennesa O W, Nak C J, Chaiya P, Omar K F, Pellin J M and Hupp T J 2012 ACS Nano 6 6185
[16] Wang Y S, Yu X H, Sun Z Z et al 2013 Chin. Phys. Lett. 30 118801
[17] Zhang T H, Piao L Y, Zhao S L et al 2012 Chin. Phys. B 21 118401
[18] Gordon R, Hausmann D, Kimm E and Shepard J 2003 Chem. Vapor Deposition 9 72
[19] Xu S 2010 PhD Dissertation (Harvard: Harvard University)
[20] Kim Y J, Lee M H, Kim H J, Lim G, Choi Y S, Park N G, Kim K K and Lee W I 2009 Adv. Mater. 21 91
[21] George S M 2010 Chem. Rev. 110 111
Related articles from Frontiers Journals
[1] Zihan Qu, Fei Ma, Yang Zhao, Xinbo Chu, Shiqi Yu, and Jingbi You. Updated Progresses in Perovskite Solar Cells[J]. Chin. Phys. Lett., 2021, 38(10): 098401
[2] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 098401
[3] Gen Yue, Zhen Deng, Sen Wang, Ran Xu, Xinxin Li, Ziguang Ma, Chunhua Du, Lu Wang, Yang Jiang, Haiqiang Jia, Wenxin Wang, Hong Chen. Absorption Enhancement of Silicon Solar Cell in a Positive-Intrinsic-Negative Junction[J]. Chin. Phys. Lett., 2019, 36(5): 098401
[4] Wan-Ying Zhao, Zhi-Liang Ku, Li-Ping Lv, Xian Lin, Yong Peng, Zuan-Ming Jin, Guo-Hong Ma, Jian-Quan Yao. Ultrafast Carrier Dynamics and Terahertz Photoconductivity of Mixed-Cation and Lead Mixed-Halide Hybrid Perovskites[J]. Chin. Phys. Lett., 2019, 36(2): 098401
[5] Rui Wu, Jun-Ling Wang, Gang Yan, Rong Wang. Photoluminescence Analysis of Electron Damage for Minority Carrier Diffusion Length in GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(4): 098401
[6] Hui-Jie Yan, Zhi-Liang Ku, Xue-Feng Hu, Wan-Ying Zhao, Min-Jian Zhong, Qi-Biao Zhu, Xian Lin, Zuan-Ming Jin, Guo-Hong Ma. Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH$_{3}$NH$_{3}$PbI$_{3}$ Perovskites[J]. Chin. Phys. Lett., 2018, 35(2): 098401
[7] Jun-Ling Wang, Tian-Cheng Yi, Yong Zheng, Rui Wu, Rong Wang. Temperature-Dependent Photoluminescence Analysis of 1.0MeV Electron Irradiation-Induced Nonradiative Recombination Centers in n$^{+}$–p GaAs Middle Cell of GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(7): 098401
[8] Du-Xiang Wang, Ming-Hui Song, Jing-Feng Bi, Wen-Jun Chen, Sen-Lin Li, Guan-Zhou Liu, Ming-Yang Li, Chao-Yu Wu. Enhanced Efficiency of Metamorphic Triple Junction Solar Cells for Space Applications[J]. Chin. Phys. Lett., 2017, 34(6): 098401
[9] Yong Zheng, Tian-Cheng Yi, Jun-Ling Wang, Peng-Fei Xiao, Rong Wang. Radiation Damage Analysis of Individual Subcells for GaInP/GaAs/Ge Solar Cells Using Photoluminescence Measurements[J]. Chin. Phys. Lett., 2017, 34(2): 098401
[10] Wen-Gui Wang, Li Zhu, Yu-Yan Weng, Wen Dong. TiO$_{2}$-Loaded WO$_{3}$ Composite Films for Enhancement of Photocurrent Density[J]. Chin. Phys. Lett., 2017, 34(2): 098401
[11] Jun-Na Zhang, Lei Wang, Zhun Dai, Xun Tang, You-Bo Liu, De-Ren Yang. The 18.3% Silicon Solar Cells with Nano-Structured Surface and Rear Emitter[J]. Chin. Phys. Lett., 2017, 34(2): 098401
[12] Yong Zheng, Tian-Cheng Yi, Peng-Fei Xiao, Juan Tang, Rong Wang. Photoluminescence Analysis of Injection-Enhanced Annealing of Electron Irradiation-Induced Defects in GaAs Middle Cells for Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2016, 33(05): 098401
[13] Talib Hussain, Hui-Qi Ye, Dong Xiao. Excess Carrier Lifetime Improvement in c-Si Solar Cells by YAG:Ce$^{3+}$-Yb$^{3+}$[J]. Chin. Phys. Lett., 2016, 33(05): 098401
[14] SUN Ding, GE Yang, XU Sheng-Zhi, ZHANG Li, LI Bao-Zhang, WANG Guang-Cai, WEI Chang-Chun, ZHAO Ying, ZHANG Xiao-Dan. Improvement of the Open Circuit Voltage of CZTSe Thin-Film Solar Cells by Surface Sulfurization Using SnS[J]. Chin. Phys. Lett., 2015, 32(12): 098401
[15] WANG Fei-Long, DAI Bin, LIU Xue-Feng, SUN Yi-Ning, SUN Zhi-Bin, YU Qiang, ZHAI Guang-Jie. Containerless Heating Process of a Deeply Undercooled Metal Droplet by Electrostatic Levitation[J]. Chin. Phys. Lett., 2015, 32(11): 098401
Viewed
Full text


Abstract