CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Insights of Unconventionally Long Exposure Time in Atomic Layer Deposition Al2O3 to Modify SnO2 Photoanode of Dye-Sensitized Solar Cells |
DONG Wan, WANG Zheng-Duo**, YANG Li-Zhen, MENG Tao, CHEN Qiang |
Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600
|
|
Cite this article: |
DONG Wan, WANG Zheng-Duo, YANG Li-Zhen et al 2014 Chin. Phys. Lett. 31 098401 |
|
|
Abstract Porous SnO2 photoanodes coated by alumina through atomic layer deposition technology are reported. It is found that when the dosing time of precursor is extended over 11 s, the 125% maximum increase of cell efficiency is achieved. It is believed that besides the interfacial charge recombination being efficiently suppressed by this ultra-thin coating, the increased absorption of dyes and elimination of the high density of monoenergetic surface states on SnO2 might play a positive role in improving the cell efficiency. The reason is that a long exposure time of precursor can guarantee the 100% coverage of alumina on porous SnO2, which is further explained by a built three-step model. Then we conclude that for a high cell efficiency in porous photoelectrode a long exposure time is indispensable.
|
|
|
|
PACS: |
84.60.Jt
|
(Photoelectric conversion)
|
|
84.60.Bk
|
(Performance characteristics of energy conversion systems; figure of merit)
|
|
82.45.Yz
|
(Nanostructured materials in electrochemistry)
|
|
|
|
|
[1] Senevirathnaa M K I, Pitigala P K D D P, Premalal E V A and Tennakone K 2007 Sol. Energy Mater. Sol. Cells 91 544 [2] Zhang X T, Liu H W, Taguchi T, Meng Q B, Sato O and Fujishima A 2004 Sol. Energy Mater. Sol. Cells 81 197 [3] Kontos A I, Kontos A G, Tsoukleris D S, Bernard M C, Spyrellis N and Falaras P 2008 J. Mater. Process Technol. 196 243 [4] Murakami T N, Kijitori Y, Kawashima N and Miyasaka T J 2004 Photochem. Photobiol. 164 187 [5] Kim J, Kang S H, Kim H S and Sung Y 2010 Langmuir 26 2864 [6] Choi S C and Lee H S 2012 Phys. Scr. 85 025801 [7] Tien T C, Pan F M, Wang L P, Lee C H, Tung Y L, Tsai S Y, Lin C, Tsai F Y and Chen S J 2009 Nanotechnology 20 305201 [8] Dahoudi N A, Zhang Q F and Cao G Z 2012 Int. J. Photoenergy 2012 1 [9] Li C Y, Wang J B and Wang Y Q 2012 Chin. Phys. B 21 098102 [10] Huang Q L, Li F, Gong Y, Luo J H, Yang S Z, Luo Y H, Li D M, Bai X D and Meng Q B 2013 J. Phys. Chem. C 117 10965 [11] Lin C, Tsai F Y, Lee M H, Lee C H, Tien T C, Wang L P and Tsai S Y 2009 J. Mater. Chem. 19 2999 [12] Shi J J, Dong W, Xu Y Z, Li C H, Lv S T, Zhu L F, Dong J, Luo Y H, Li D M, Meng Q B and Chen Q 2013 Chin. Phys. Lett. 30 128402 [13] Sung S D, Lim I, Kim M S and Lee W I 2013 Bull. Korean Chem. Soc. 34 411 [14] Kay A and Gratzel M 2002 Chem. Mater. 14 2930 [15] Vennesa O W, Nak C J, Chaiya P, Omar K F, Pellin J M and Hupp T J 2012 ACS Nano 6 6185 [16] Wang Y S, Yu X H, Sun Z Z et al 2013 Chin. Phys. Lett. 30 118801 [17] Zhang T H, Piao L Y, Zhao S L et al 2012 Chin. Phys. B 21 118401 [18] Gordon R, Hausmann D, Kimm E and Shepard J 2003 Chem. Vapor Deposition 9 72 [19] Xu S 2010 PhD Dissertation (Harvard: Harvard University) [20] Kim Y J, Lee M H, Kim H J, Lim G, Choi Y S, Park N G, Kim K K and Lee W I 2009 Adv. Mater. 21 91 [21] George S M 2010 Chem. Rev. 110 111 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|