Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 060401    DOI: 10.1088/0256-307X/31/6/060401
GENERAL |
Hawking Radiation of Dirac Field in the Linear Dilaton Black Hole
LI Ran**
Department of Physics, Henan Normal University, Xinxiang 453007
Cite this article:   
LI Ran 2014 Chin. Phys. Lett. 31 060401
Download: PDF(381KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By studying the perturbation of massless Dirac field in the background of linear dilaton black hole we show that the covariant Dirac equation can be separated into radial and angular equations. The Damour–Ruffini method is applied to derive the spectrum of Hawking radiation for the Dirac field, from which the Hawking temperature can be read off. It is shown that the Hawking temperature is consistent with the result calculated from the surface gravity.
Published: 26 May 2014
PACS:  04.70.-s (Physics of black holes)  
  04.60.Cf (Gravitational aspects of string theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/060401       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/060401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Ran
[1] Hawking S W 1975 Commun. Math. Phys. 43 199
[2] Damour T and Ruffini R 1976 Phys. Rev. D 14 332
[3] Christensen S and Fulling S 1977 Phys. Rev. D 15 2088
[4] Parikh M K and Wilczek F 2000 Phys. Rev. Lett. 85 5042
[5] Zhang J Y and Zhao Z 2005 J. High Energy Phys. 0510 055
[6] Zhang J Y 2013 Chin. Phys. Lett. 30 070401
[7] Robinson S P and Wilczek F 2005 Phys. Rev. Lett. 95 011303
[8] Iso S, Umetsu H and Wilczek F 2006 Phys. Rev. Lett. 96 151302
[9] Page D N 1976 Phys. Rev. D 13 198
[10] Unruh W G 1976 Phys. Rev. D 14 3251
[11] Clement G, Fabris J C and Marques G T 2007 Phys. Lett. B 651 54
[12] Clement G, Galtsov D and Leygnac C 2003 Phys. Rev. D 67 024012
[13] Mazharimousavi S H, Sakalli I and Halilsoy M 2009 Phys. Lett. B 672 177
[14] Clement G and Leygnac C 2004 Phys. Rev. D 70 084018
[15] He X K and Liu W B 2007 Chin. Phys. Lett. 24 2448
[16] Zhou S W and Liu W B 2008 Phys. Rev. D 77 104021
[17] Mao P J, Li R, Jia L Y and Ren J R 2011 Eur. Phys. J. C 71 1527
[18] Mao P J, Jia L Y, Li R and Ren J R 2010 Classical Quantum Gravity 27 165016
[19] Slavov P I and Yazadjiev S S 2012 Phys. Rev. D 86 084042
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 060401
[2] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole: Gravitational, Electromagnetic and Massless Dirac Perturbations[J]. Chin. Phys. Lett., 2018, 35(5): 060401
[3] Ming Zhang, Rui-Hong Yue. Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2018, 35(4): 060401
[4] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2018, 35(1): 060401
[5] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 060401
[6] Jun Liang. Regular Magnetic Black Hole Gravitational Lensing[J]. Chin. Phys. Lett., 2017, 34(5): 060401
[7] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 060401
[8] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 060401
[9] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 060401
[10] ZHANG Ruan-Jing, CHEN Ju-Hua, GAN Qiao-Shan, WANG Yong-Jiu. Time-Like Geodesic Motion in Schwarzschild Spacetime with Weak-Field Limit[J]. Chin. Phys. Lett., 2015, 32(08): 060401
[11] LIAO Ping, ZHANG Ruan-Jing, CHEN Ju-Hua, WANG Yong-Jiu. Scattering of Scalar Wave by Extended Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2015, 32(5): 060401
[12] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 060401
[13] Kourosh Nozari, A. Yazdani. The Energy Distribution of a Noncommutative Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2013, 30(9): 060401
[14] CHEN Song-Bai, LIU Xiao-Fang, LIU Chang-Qing. PV Criticality of an AdS Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2013, 30(6): 060401
[15] A. Belhaj, M. Chabab, H. El Moumni, M. B. Sedra. On Thermodynamics of AdS Black Holes in Arbitrary Dimensions[J]. Chin. Phys. Lett., 2012, 29(10): 060401
Viewed
Full text


Abstract