GENERAL |
|
|
|
|
Quantum Dissonance as an Indicator of Quantum Phase Transition in the XXZ Chain |
ZHANG Ye-Qi1**, HE Qi-Liang2, HU Zheng-Da3, LIU Ji-Cai1 |
1Department of Mathematics and Physics, North China Electric Power University, Beijing 102206 2School of Physics and Electronics, Guizhou Normal University, Guiyang 550001 3School of Science, Jiangnan University, Wuxi 214122
|
|
Cite this article: |
ZHANG Ye-Qi, HE Qi-Liang, HU Zheng-Da et al 2014 Chin. Phys. Lett. 31 060302 |
|
|
Abstract We investigate the behavior of quantum dissonance in the anti-ferromagnetic XXZ spin S=1/2 chain, which exhibits a quantum phase transition. Based on a unified view of quantum and classical correlations, quantum dissonance is analytically calculated and is compared with entanglement, discord, and classical correlations for the ground state of the system. It is found that the nearest-neighbor quantum dissonance achieves an extremum and exhibits the sharpest change at the critical point. Therefore, quantum dissonance may serve as a more efficient indicator of quantum phase transitions in the XXZ spin chain.
|
|
Published: 26 May 2014
|
|
|
|
|
|
[1] Sachdev S 2000 Quantum Phase Transition (Cambridge: Cambridge University Press) [2] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110 [3] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902 [4] Gu S J, Deng S S, Li Y Q and Lin H Q 2004 Phys. Rev. Lett. 93 086402 [5] Wu L A, Sarandy M S and Lidar D A 2004 Phys. Rev. Lett. 93 250404 [6] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302 [7] Dillenschneider R 2008 Phys. Rev. B 78 224413 [8] Sarandy M S 2009 Phys. Rev. A 80 022108 [9] Werlang T, Ribeiro G A P and Rigolin G 2011 Phys. Rev. A 83 062334 [10] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) [11] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895 [12] Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891 [13] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672 [14] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 [15] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275 [16] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501 [17] Bellomo B et al 2012 Phys. Rev. A 85 032104 [18] L Roa, J C Retamal and M Alid-Vaccarezza 2011 Phys. Rev. Lett. 107 080401 [19] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404 [20] Mazzola L, Maniscalco S, Piilo J, Suominen K A and Garraway B M 2009 Phys. Rev. A 79 042302 [21] Jimbo M and Miwa T 1996 J. Phys. A 29 2923 [22] Korepin V E, Izergin A G, Essler F H L and Uglov D B 1994 Phys. Lett. A 190 182 [23] Kato G, Shiroishi M, Takahashi M and Sakai K 2003 J. Phys. A 36 L337 [24] Jimbo M, Miki K, Miwa T and Nakayashiki A 1992 Phys. Lett. A 168 256 [25] Nakayashiki A 1994 Int. J. Mod. Phys. A 9 5673 [26] Takahashi M, Kato G and Shiroishi M 2004 J. Phys. Soc. Jpn. 73 245 [27] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|