Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 060302    DOI: 10.1088/0256-307X/31/6/060302
GENERAL |
Quantum Dissonance as an Indicator of Quantum Phase Transition in the XXZ Chain
ZHANG Ye-Qi1**, HE Qi-Liang2, HU Zheng-Da3, LIU Ji-Cai1
1Department of Mathematics and Physics, North China Electric Power University, Beijing 102206
2School of Physics and Electronics, Guizhou Normal University, Guiyang 550001
3School of Science, Jiangnan University, Wuxi 214122
Cite this article:   
ZHANG Ye-Qi, HE Qi-Liang, HU Zheng-Da et al  2014 Chin. Phys. Lett. 31 060302
Download: PDF(493KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the behavior of quantum dissonance in the anti-ferromagnetic XXZ spin S=1/2 chain, which exhibits a quantum phase transition. Based on a unified view of quantum and classical correlations, quantum dissonance is analytically calculated and is compared with entanglement, discord, and classical correlations for the ground state of the system. It is found that the nearest-neighbor quantum dissonance achieves an extremum and exhibits the sharpest change at the critical point. Therefore, quantum dissonance may serve as a more efficient indicator of quantum phase transitions in the XXZ spin chain.
Published: 26 May 2014
PACS:  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  75.10.Pq (Spin chain models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/060302       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/060302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ye-Qi
HE Qi-Liang
HU Zheng-Da
LIU Ji-Cai
[1] Sachdev S 2000 Quantum Phase Transition (Cambridge: Cambridge University Press)
[2] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110
[3] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[4] Gu S J, Deng S S, Li Y Q and Lin H Q 2004 Phys. Rev. Lett. 93 086402
[5] Wu L A, Sarandy M S and Lidar D A 2004 Phys. Rev. Lett. 93 250404
[6] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
[7] Dillenschneider R 2008 Phys. Rev. B 78 224413
[8] Sarandy M S 2009 Phys. Rev. A 80 022108
[9] Werlang T, Ribeiro G A P and Rigolin G 2011 Phys. Rev. A 83 062334
[10] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[11] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[12] Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891
[13] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[14] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[15] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[16] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[17] Bellomo B et al 2012 Phys. Rev. A 85 032104
[18] L Roa, J C Retamal and M Alid-Vaccarezza 2011 Phys. Rev. Lett. 107 080401
[19] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[20] Mazzola L, Maniscalco S, Piilo J, Suominen K A and Garraway B M 2009 Phys. Rev. A 79 042302
[21] Jimbo M and Miwa T 1996 J. Phys. A 29 2923
[22] Korepin V E, Izergin A G, Essler F H L and Uglov D B 1994 Phys. Lett. A 190 182
[23] Kato G, Shiroishi M, Takahashi M and Sakai K 2003 J. Phys. A 36 L337
[24] Jimbo M, Miki K, Miwa T and Nakayashiki A 1992 Phys. Lett. A 168 256
[25] Nakayashiki A 1994 Int. J. Mod. Phys. A 9 5673
[26] Takahashi M, Kato G and Shiroishi M 2004 J. Phys. Soc. Jpn. 73 245
[27] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 060302
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 060302
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 060302
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 060302
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 060302
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 060302
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 060302
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 060302
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 060302
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 060302
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 060302
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 060302
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 060302
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 060302
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 060302
Viewed
Full text


Abstract