GENERAL |
|
|
|
|
Chaotic Motion of a Charged Particle around a Weakly Magnetized Schwarzschild Black Hole Containing Cosmic String |
HUANG Qi-Hong, CHEN Ju-Hua, WANG Yong-Jiu** |
College of Physics and Information Science, Hunan Normal University, Changsha 410081
|
|
Cite this article: |
HUANG Qi-Hong, CHEN Ju-Hua, WANG Yong-Jiu 2014 Chin. Phys. Lett. 31 060402 |
|
|
Abstract We discuss the conditions where a charged particle that was originally revolving around a weakly magnetized black hole containing cosmic string in the innermost stable circular orbit will escape to infinity after it is kicked by another particle or photon. We find that the motion of the kicked particle is chaotic. The critical escape energy and velocity of the kicked charged particle with different initial radial velocities are obtained.
|
|
Published: 26 May 2014
|
|
PACS: |
04.70.Bw
|
(Classical black holes)
|
|
04.25.-g
|
(Approximation methods; equations of motion)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
|
|
|
[1] Borm C V and Spaans M 2013 Astron. Astrophys. 553 L9 [2] McKinney J C and Narayan R 2007 Mon. Not. R. Astron. Soc. 375 531 [3] Dobbie P B, Kuncic Z, Bicknell G V and Salmeron R 2009 Cosmic Magnetic Field (IAU S259): From Planets, To Stars and Galaxies (New York: Cambridge University Press) p 119 [4] Koide S, Shibata K, Kudoh T and Meier D L 2002 Science 295 1688 [5] Blandford R D and Znajek R L 1977 Mon. Not. R. Astron. Soc. 179 433 [6] Al Zahrani A M, Frolov V P and Shoom A A 2013 Phys. Rev. D 87 084043 [7] Vilenkin A and Shellard P 1994 Cosmic Strings Other Topological Defects (New York: Cambridge University Press) p 59 [8] Polchinski J 2006 NATO Sci. Ser. II: Math. Phys. Chem. 208 229 [9] Majumdar M and Davis A 2002 J. High Energy Phys. 0203 056 [10] Bach R and Weyl H 1922 Math. Z. 13 134 [11] Aliev A and Gal'tsov D 1988 Sov. Astron. Lett. 14 48 [12] Hackmann E, Hartmann B, Lammerzahl C and Sirimachan P 2010 Phys. Rev. D 81 064016 [13] Wang Y and Wu X 2012 Chin. Phys. B 21 050504 [14] Wang Y, Wu X and Sun Wei 2013 Commun. Theor. Phys. 60 433 [15] Chen J H and Wang Y J 2003 Classical Quantum Gravity 20 3897 [16] Karas V and Vokrouhlicky D 1992 Gen. Relativ. Gravitation 24 729 [17] Santoprete M and Cicogna G 2002 Gen. Relativ. Gravitation 34 1107 [18] Takahashi M and Koyama H 2009 Astrophys. J. 693 472 [19] Kopacek O, Karas V, Kovar J and Stuchik Z 2010 Astrophys. J. 722 1240 [20] Aryal M, Ford L H and Vilenkin A 1986 Phys. Rev. D 34 2263 [21] Frolov V P and Shoom A A 2010 Phys. Rev. D 82 084034 [22] Ott E 1993 Chaos Dynamical System (New York: Cambridge University Press) p 152 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|