Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 060402    DOI: 10.1088/0256-307X/31/6/060402
GENERAL |
Chaotic Motion of a Charged Particle around a Weakly Magnetized Schwarzschild Black Hole Containing Cosmic String
HUANG Qi-Hong, CHEN Ju-Hua, WANG Yong-Jiu**
College of Physics and Information Science, Hunan Normal University, Changsha 410081
Cite this article:   
HUANG Qi-Hong, CHEN Ju-Hua, WANG Yong-Jiu 2014 Chin. Phys. Lett. 31 060402
Download: PDF(895KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We discuss the conditions where a charged particle that was originally revolving around a weakly magnetized black hole containing cosmic string in the innermost stable circular orbit will escape to infinity after it is kicked by another particle or photon. We find that the motion of the kicked particle is chaotic. The critical escape energy and velocity of the kicked charged particle with different initial radial velocities are obtained.
Published: 26 May 2014
PACS:  04.70.Bw (Classical black holes)  
  04.25.-g (Approximation methods; equations of motion)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/060402       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/060402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Qi-Hong
CHEN Ju-Hua
WANG Yong-Jiu
[1] Borm C V and Spaans M 2013 Astron. Astrophys. 553 L9
[2] McKinney J C and Narayan R 2007 Mon. Not. R. Astron. Soc. 375 531
[3] Dobbie P B, Kuncic Z, Bicknell G V and Salmeron R 2009 Cosmic Magnetic Field (IAU S259): From Planets, To Stars and Galaxies (New York: Cambridge University Press) p 119
[4] Koide S, Shibata K, Kudoh T and Meier D L 2002 Science 295 1688
[5] Blandford R D and Znajek R L 1977 Mon. Not. R. Astron. Soc. 179 433
[6] Al Zahrani A M, Frolov V P and Shoom A A 2013 Phys. Rev. D 87 084043
[7] Vilenkin A and Shellard P 1994 Cosmic Strings Other Topological Defects (New York: Cambridge University Press) p 59
[8] Polchinski J 2006 NATO Sci. Ser. II: Math. Phys. Chem. 208 229
[9] Majumdar M and Davis A 2002 J. High Energy Phys. 0203 056
[10] Bach R and Weyl H 1922 Math. Z. 13 134
[11] Aliev A and Gal'tsov D 1988 Sov. Astron. Lett. 14 48
[12] Hackmann E, Hartmann B, Lammerzahl C and Sirimachan P 2010 Phys. Rev. D 81 064016
[13] Wang Y and Wu X 2012 Chin. Phys. B 21 050504
[14] Wang Y, Wu X and Sun Wei 2013 Commun. Theor. Phys. 60 433
[15] Chen J H and Wang Y J 2003 Classical Quantum Gravity 20 3897
[16] Karas V and Vokrouhlicky D 1992 Gen. Relativ. Gravitation 24 729
[17] Santoprete M and Cicogna G 2002 Gen. Relativ. Gravitation 34 1107
[18] Takahashi M and Koyama H 2009 Astrophys. J. 693 472
[19] Kopacek O, Karas V, Kovar J and Stuchik Z 2010 Astrophys. J. 722 1240
[20] Aryal M, Ford L H and Vilenkin A 1986 Phys. Rev. D 34 2263
[21] Frolov V P and Shoom A A 2010 Phys. Rev. D 82 084034
[22] Ott E 1993 Chaos Dynamical System (New York: Cambridge University Press) p 152
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 060402
[2] M. Azam, A. Aslam. Accretion onto the Magnetically Charged Regular Black Hole[J]. Chin. Phys. Lett., 2017, 34(7): 060402
[3] Hao Tang, Yu Song, Rui-Hong Yue, Cheng-Yi Sun. Destroying a Peldan Electrostatic Solution Black Hole[J]. Chin. Phys. Lett., 2017, 34(4): 060402
[4] Yu Song, Hao Tang, De-Cheng Zou, Rui-Hong Yue, Cheng-Yi Sun. Destroying Extremal Kerr–Newman-AdS Black Holes with Test Particles[J]. Chin. Phys. Lett., 2017, 34(3): 060402
[5] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 060402
[6] Jun-Jin Peng, Wen-Chang Xiang, Shao-Hong Cai. Abbott–Deser–Tekin Charge of Dilaton Black Holes with Squashed Horizons[J]. Chin. Phys. Lett., 2016, 33(08): 060402
[7] Wen-Lin Tang, Zi-Ren Luo, Yun-Kau Lau. Generalised Error Functions from the Kerr Metric[J]. Chin. Phys. Lett., 2016, 33(03): 060402
[8] P. K. Sahoo, K. L. Mahanta, D. Goit, A. K. Sinha, S. S. Xulu, U. R. Das, A. Prasad, R. Prasad. Einstein Energy-Momentum Complex for a Phantom Black Hole Metric[J]. Chin. Phys. Lett., 2015, 32(02): 060402
[9] HE Guan-Sheng, LIN Wen-Bin. The Exact Harmonic Metric for a Moving Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2014, 31(09): 060402
[10] ZHAO Zi-Xu, PAN Qi-Yuan, JING Ji-Liang. Holographic Superconductor Models with RF2 Corrections[J]. Chin. Phys. Lett., 2013, 30(12): 060402
[11] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 060402
[12] G. Abbas, R. M. Ramzan. Thermodynamics of Phantom Energy Accreting onto a Black Hole in Einstein–Power–Maxwell Gravity[J]. Chin. Phys. Lett., 2013, 30(10): 060402
[13] S. S. Zade. Dynamics of Apparent Horizons in (N+2)-Dimensional Space-Times[J]. Chin. Phys. Lett., 2012, 29(11): 060402
[14] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 060402
[15] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 060402
Viewed
Full text


Abstract