Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 057802    DOI: 10.1088/0256-307X/31/5/057802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Determination of the In-Plane Optical Conductivity of Multilayer Graphene Supported on a Transparent Substrate of Finite Thickness from Normal-Incidence Transmission Spectra
CHEN Ya-Qin**
Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
Cite this article:   
CHEN Ya-Qin 2014 Chin. Phys. Lett. 31 057802
Download: PDF(536KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Normal-incidence transmission measurements are commonly used for determining the real part of the in-plane optical conductivities σ1(ω) of graphene layers. We present an accurate expression for σ1(ω) in a closed form for a multilayer graphene film supported on a finite-thickness transparent substrate. This form takes into account the coherent and incoherent multiple reflections of the system, whereas the traditional method assumes a semi-infinite substrate. The simulated results for graphene sheets with a layer number N≤10 show that no matter what the transparent substrate is, the accuracy to which σ1(ω) is determined by applying this expression is improved with no systematic error. Moreover, the layer number N can be exactly determined by simply dividing the σ1(ωp) value of N-layer graphene by the corresponding σ1(ωp) of monolayer graphene, where ωp is the peak frequency of the ordinary dielectric function's imaginary part ε2(ω) of graphene.
Published: 24 April 2014
PACS:  78.67.Wj (Optical properties of graphene)  
  81.05.ue (Graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/057802       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/057802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Ya-Qin
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Geim A K 2009 Science 324 1530
[3] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
[4] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
[5] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[6] Xu Y H, Jia Y L, Zhou J and Dong J M 2010 Chin. Phys. Lett. 27 057303
[7] Mak K F, Sfeir M Y, Misewich J A and Heinz T F 2010 Proc. Natl. Acad. Sci. USA 107 14999
[8] Lee C, Kim J Y, Bae S, Kim K S, Hong B H and Choi E J 2011 Appl. Phys. Lett. 98 071905
[9] Mak K F, Shan J and Heinz T F 2011 Phys. Rev. Lett. 106 046401
[10] Yan H, Xia F, Zhu W, Freitag M, Dimitrakopoulos C, Bol A A, Tulevski G and Avouris P 2011 ACS Nano 5 9854
[11] Dawlaty J M, Shivaraman S, Strait J, George P, Chandrashekhar M, Rana F, Spencer M G, Veksler D and Chen Y 2008 Appl. Phys. Lett. 93 131905
[12] Swanepoel R 1983 J. Phys. E: Sci. Instrum. 16 1214
[13] Harbecke B 1986 Appl. Phys. B 39 165
[14] Stauber T, Peres N M R and Geim A K 2008 Phys. Rev. B 78 085432
[15] Wang W, Balooch M, Claypool C, Zawaideh M and Farnaam K 2009 Solid State Technol. 52 18
[16] Thorlabs, Inc., Newton, http://www.thorlabschina.cn (USA: New Jersey)
Related articles from Frontiers Journals
[1] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 057802
[2] Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 057802
[3] B. Merabet, H. Alamri, M. Djermouni, A. Zaoui, S. Kacimi, A. Boukortt, M. Bejar. Optimal Bandgap of Double Perovskite La-Substituted Bi$_{2}$FeCrO$_{6}$ for Solar Cells: an ab initio GGA+$U$ Study[J]. Chin. Phys. Lett., 2017, 34(1): 057802
[4] Zhi-Kun Liu, Ya-Nan Xie, Li Geng, Deng-Ke Pan, Pan Song. Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna[J]. Chin. Phys. Lett., 2016, 33(02): 057802
[5] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 057802
[6] CHEN Tuo, LU Xuan-Hui. Surface Plasmon and Fabry–Perot Enhanced Magneto-Optical Kerr Effect in Graphene Microribbons[J]. Chin. Phys. Lett., 2015, 32(02): 057802
[7] YAO Bao-Quan, CUI Zheng, DUAN Xiao-Ming, SHEN Ying-Jie, WANG Ji, DU Yan-Qiu. A Graphene-Based Passively Q-Switched Ho:YAG Laser[J]. Chin. Phys. Lett., 2014, 31(07): 057802
[8] ZHAO Jun-Qing, WANG Yong-Gang, YAN Pei-Guang, RUAN Shuang-Chen, CHENG Jian-Qun, DU Ge-Guo, YU Yong-Qin, ZHANG Ge-Lin, WEI Hui-Feng, LUO Jie, Yuen H. Tsang. Graphene-Oxide-Based Q-Switched Fiber Laser with Stable Five-Wavelength Operation[J]. Chin. Phys. Lett., 2012, 29(11): 057802
Viewed
Full text


Abstract