Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 057801    DOI: 10.1088/0256-307X/31/5/057801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Temperature Dependence of Luminescence of CdS:Mn/ZnS Core-Shell Quantum Dots
FANG Dai-Feng1, WANG Zhong-Ping2, DAI Ru-Cheng2, ZHANG Zeng-Ming2**, DING Ze-Jun1
1Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026
2Centre of Physical Experiments, University of Science and Technology of China, Hefei 230026
Cite this article:   
FANG Dai-Feng, WANG Zhong-Ping, DAI Ru-Cheng et al  2014 Chin. Phys. Lett. 31 057801
Download: PDF(907KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Luminescence intensity of CdS:Mn/ZnS core-shell quantum dots (QDs) can be strongly enhanced in comparison with bulk CdS:Mn and nanoparticles, while the luminescence due to the surface state is greatly suppressed by a capping ZnS shell. We find that with the increasing temperature, the peak position of CdS:Mn/ZnS core-shell QDs blue shifts due to the reduction of phonon coupling. Unlike the bulk CdS:Mn, the luminescence of the core-shell QDs is less sensitive to thermal quenching.
Published: 24 April 2014
PACS:  78.67.Hc (Quantum dots)  
  78.55.Et (II-VI semiconductors)  
  78.40.Fy (Semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/057801       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/057801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FANG Dai-Feng
WANG Zhong-Ping
DAI Ru-Cheng
ZHANG Zeng-Ming
DING Ze-Jun
[1] Colvin V L, Schlamp M C and Alivisatos A P 1994 Nature 370 354
[2] Coe S, Woo W K, Bawendi M and Bulovic V 2002 Nature 420 800
[3] Qu D L, Zhang Z S, Yue S Z, Wu Q Y, Yan P R, Zhao Y and Liu S Y 2012 Chin. Phys. Lett. 29 097805
[4] Qu L and Peng X J 2002 Am. Chem. Soc. 124 2049
[5] Chen D, Zhao F, Qi H, Rutherford M and Peng X G 2010 Chem. Mater. 22 1437
[6] Lakowicz J R, Gryczynski I, Gryczynski Z and Murphy C J 1999 J. Phys. Chem. B 103 7613
[7] Tanaka M and Masumoto Y 2001 Solid State Commun. 120 7
[8] Ma H, Ma G H, Wang W J, Gao X X and Ma H L 2008 Chin. Phys. B 17 1280
[9] Qi L, Ma J, Cheng H and Zhao Z 1996 Colloids Surf. A 111 195
[10] Mani E, Chettiannan R, Devarajan M, Kanchan D and Rajdip B 2007 J. Phys. Chem. C 111 3216
[11] Yang H and Holloway P H 2003 Appl. Phys. Lett. 82 1965
[12] Yang H, Holloway P H and Santra S 2004 J. Phys. Chem. B 121 7421
[13] Amma B S, Manzoor K, Ramakrishna K and Pattabi M 2008 Mater. Chem. Phys. 112 789
[14] Tanaka M and Masumoto Y 2000 Chem. Phys. Lett. 324 249
[15] Tanaka M 2002 J. Lumin. 100 163
[16] Zou B S, Little R B, Wang J P and El-Sayed M A 1999 Int. J. Quantum Chem. 72 439
[17] Pileni M P, Zemb T and Petit C 1985 Chem. Phys. Lett. 118 414
[18] Zhang W and Lee H R 2011 J. Photochem. Photobio. A 218 1
[19] Cao L X, Huang S H, Lu S Z and Lin J L 2005 J. Colloid Interface Sci. 284 516
[20] Peng X G, Schlamp M C, Kadavanich A V and Alivisatos A P 1997 J. Am. Chem. Soc. 119 7019
[21] Yang Y, Chen O, Angerhofer A and Cao Y C 2008 J. Am. Chem. Soc. 130 15649
[22] Wuister S F and Meijerink A 2003 J. Lumin. 105 35
[23] Yu D Q, Chen X, Zhang H Q, Hu L Z, Sun J C, Qiao S S, Sun K T and Zhu J X 2010 Sci. Chin. Phys. Mech. Astron. 53 1842
[24] Kim Y G, Baek K S and Chang S K 2009 Solid State Commun. 149 937
[25] Jing P, Zheng J, Ikezawa M, Liu X, Lv S, Kong X, Zhao J and Masumoto Y 2009 J. Phys. Chem. C 113 13545
[26] Gurney R W and Mott N F 1939 Trans. Faraday Soc. 35 69
[27] Ishizumi A and Kanemitsu Y 2006 Adv. Mater. 18 1083
[28] Bol A A, van Beek R, Ferwerda J and Meijerink A 2003 J. Phys. Chem. Solids. 64 247
[29] Chen W, Su F H, Li G H, Joly A G, Malm J O and Bovin J O 2002 J. Appl. Phys. 92 1950
[30] Su F H, Ma B S, Fan Z L, Ding K, Li G H and Chen W 2002 J. Phys.: Condens. Matter 14 12657
[31] Hoa T T Q, The N D, McVitie S, Nam N H, Vu L V, Canh T D and Long N N 2011 Opt. Mater. 33 308
[32] Yu X F, Peng X N, Chen Z Q, Lian C, Su X R, Li J B, Li M, Liu B L and Wang Q Q 2010 Appl. Phys. Lett. 96 123104
Related articles from Frontiers Journals
[1] Li-Guo Qin, Qin Wang. Modulating the Lasing Performance of the Quantum Dot-Cavity System by Adding a Resonant Driving Field[J]. Chin. Phys. Lett., 2017, 34(1): 057801
[2] Zun-Ren Lv, Hai-Ming Ji, Xiao-Guang Yang, Shuai Luo, Feng Gao, Feng Xu, Tao Yang. Large Signal Modulation Characteristics in the Transition Regime for Two-State Lasing Quantum Dot Lasers[J]. Chin. Phys. Lett., 2016, 33(12): 057801
[3] R. Nasehi, S. H. Asadpour, H. Rahimpour Soleimani, M. Mahmoudi. Controlling the Goos–Hänchen Shift via Incoherent Pumping Field and Electron Tunneling in the Triple Coupled InGaAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2016, 33(01): 057801
[4] WU Xue-Fei, DOU Xiu-Ming, DING Kun, ZHOU Peng-Yu, NI Hai-Qiao, NIU Zhi-Chuan, ZHU Hai-Jun, JIANG De-Sheng, ZHAO Cui-Lan, SUN Bao-Quan. Second-Order Correlation Function for Asymmetric-to-Symmetric Transitions due to Spectrally Indistinguishable Biexciton Cascade Emission[J]. Chin. Phys. Lett., 2015, 32(12): 057801
[5] WANG Hai-Yan, SU Dan, YANG Shuang, DOU Xiu-Ming, ZHU Hai-Jun, JIANG De-Sheng, NI Hai-Qiao, NIU Zhi-Chuan, ZHAO Cui-Lan, SUN Bao-Quan. Au Microdisk-Size Dependence of Quantum Dot Emission from the Hybrid Metal-Distributed Bragg Reflector Structures Employed for Single Photon Sources[J]. Chin. Phys. Lett., 2015, 32(10): 057801
[6] WANG Xiao-Bo, YAN Ling-Ling, LI Yong, LI Xin-Jian. Time-Resolved Photoluminescence Study of Silicon Nanoporous Pillar Array[J]. Chin. Phys. Lett., 2015, 32(09): 057801
[7] YANG Shuang, DOU Xiu-Ming, YU Ying, NI Hai-Qiao, NIU Zhi-Chuan, JIANG De-Sheng, SUN Bao-Quan. Single-Photon Emission from GaAs Quantum Dots Embedded in Nanowires[J]. Chin. Phys. Lett., 2015, 32(07): 057801
[8] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 057801
[9] LI Shi-Guo, GONG Qian, CAO Chun-Fang, WANG Xin-Zhong, YAN Jin-Yi, WANG Hai-Long. Junction-Temperature Measurement in InAs/InP(100) Quantum-Dot Lasers[J]. Chin. Phys. Lett., 2015, 32(01): 057801
[10] YANG Wen-Xing, CHEN Ai-Xi, BAI Yan-Feng, LU Jia-Wei. Carrier-Envelope-Phase Control of Single-Electron Transport in Coupled Quantum Dots[J]. Chin. Phys. Lett., 2013, 30(11): 057801
[11] LV Xue-Qin, JIN Peng, CHEN Hong-Mei, WU Yan-Hua, WANG Fei-Fei, WANG Zhan-Guo. Broadband Light Emission from Chirped Multiple InAs Quantum Dot Structure[J]. Chin. Phys. Lett., 2013, 30(11): 057801
[12] QU Jun-Rong, ZHENG Jian-Bang, WU Guang-Rong, CAO Chong-De. Bulk Heterojunction Photovoltaic Devices Based on a Poly(2-Methoxy, 5-Octoxy)-1, 4-Phenylenevinylene-Single Walled Carbon Nanotube-ZnSe Quantum Dots Active Layer[J]. Chin. Phys. Lett., 2013, 30(10): 057801
[13] ZHANG Shi-Zhu, YE Xiao-Ling, XU Bo, LIU Shu-Man, ZHOU Wen-Fei, WANG Zhan-Guo. Fabrication of Low-Density Long-Wavelength InAs Quantum Dots using a Formation-Dissolution-Regrowth Method[J]. Chin. Phys. Lett., 2013, 30(8): 057801
[14] LUO Shuai, JI Hai-Ming, GAO Feng, YANG Xiao-Guang, LIANG Ping, ZHAO Ling-Juan, YANG Tao. InAs/InGaAsP/InP Quantum Dot Lasers Grown by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(6): 057801
[15] YUE Li, GONG Qian, YAN Jin-Yi, CAO Chun-Fang, LIU Qing-Bo, WANG Yang, CHENG Ruo-Hai, WANG Hai-Long, LI Shi-Guo. High Intensity Single-Mode Peak Observed in the Lasing Spectrum of InAs/GaAs Quantum Dot Laser[J]. Chin. Phys. Lett., 2013, 30(2): 057801
Viewed
Full text


Abstract