Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 057306    DOI: 10.1088/0256-307X/31/5/057306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Manipulation of Surface Plasmon Polaritons by Phase Modulation of Source Field with Inverse Problem Algorithm
LIU Chun-Xiang1**, LIANG Guo-Tao1, ZHANG Mei-Na2, LI Zhen-Hua1, CHENG Chuan-Fu1
1College of Physics and Electronics, Shandong Normal University, Jinan 250014
2Qilu University of Technology, Jinan 250353
Cite this article:   
LIU Chun-Xiang, LIANG Guo-Tao, ZHANG Mei-Na et al  2014 Chin. Phys. Lett. 31 057306
Download: PDF(885KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The predetermined field distributions can be achieved by phase modulation of the source field to manipulate the propagation of surface plasmon polaritons (SPPs). The modulations of the radius of the circular slit are according to the phase distributions on the slit, which are calculated by using the Gerchberg–Saxton algorithm with the known field. We design the surface geometric shape of the radius-varied circular slit for exciting the SPP field with the linear, triangular, square and circular distribution characteristics, respectively. The slit structure designed for the circular field distribution is a plasmonic vortex lens that can be used to generate the vortex with the specified size of the primary ring, which shows that this heuristic method has the potential to devise plasmonic devices.
Published: 24 April 2014
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.25.Fx (Diffraction and scattering)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  04.30.Nk (Wave propagation and interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/057306       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/057306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Chun-Xiang
LIANG Guo-Tao
ZHANG Mei-Na
LI Zhen-Hua
CHENG Chuan-Fu
[1] Ebbesen T W, Genet C and Bozhevolnyi S I 2008 Phys. Today 61 44
[2] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
[3] Haes A J and Van Duyne R P 2002 J. Am. Chem. Soc. 124 10596
[4] Luo X G and Ishihara T 2004 Appl. Phys. Lett. 84 4780
[5] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[6] Shalaev V M and Kawata S Eds. 2007 Nanophotonics with Surface Plasmons (Amsterdam: Elsevier) p 114
[7] Liu Z W, Steele J M, Srituravanich W, Pikus Y, Sun C and Zhang X 2005 Nano Lett. 5 1726
[8] Yuan G H, Yuan X C, Bu J, Tan P S and Wang Q 2011 Opt. Express 19 224
[9] Liu A P, Rui G H, Ren X F, Zhan Q W, Guo G C and Guo G P 2012 Opt. Express 20 24151
[10] Stein B, Laluet J Y, Devaux E, Genet C and Ebbesen T W 2010 Phys. Rev. Lett. 105 266804
[11] Li L, Li T, Wang S, Zhu S and Zhang X 2011 Nano Lett. 11 4357
[12] González M U, Weeber J C, Baudrion A L and Dereux A 2006 Phys. Rev. B 73 155416
[13] Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y and Ebbesen T W 2006 Nature 440 508
[14] Weeber J C, Lacroute Y and Dereux A 2003 Phys. Rev. B 68 115401
[15] Taflove A and Hagness S C 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method (Norwood: Artech House) p 126
[16] Ozaki M, Kato J and Kawata S 2011 Science 332 218
[17] Dolev I, Epstein I and Arie A 2012 Phys. Rev. Lett. 109 203903
[18] Chen Y H, Fu J X and Li Z Y 2011 Opt. Express 19 23908
[19] Chen Y H, Huang L, Gan L and Li Z Y 2012 Light: Sci. Appl. 1 2047
[20] Wyrowski F 1990 J. Opt. Soc. Am. A 7 961
[21] Gerchberg R W and Saxton W O 1972 Optik 35 227
[22] Born M and Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) p 412
[23] Maier S 2007 Plasmonics: Fundamentals and Applications (New York: Springer) p 110
[24] Liu Z, Wang Y, Yao J, Lee H, Srituravanich W and Zhang X 2009 Nano Lett. 9 462
[25] Aigouy L, Lalanne P, Hugonin J P, Julie G, Mathet V and Mortier M 2007 Phys. Rev. Lett. 98 153902
[26] Palik E D 1991 Handbook of Optical Constants of Solids (New York: Academic Press) p 553
[27] Depasse F, Paesler M A, Courjon D and Vigoureux J M 1995 Opt. Lett. 20 234
[28] Smolyaninov I I, Mazzoni D L, Mait J and Davis C C 1997 Phys. Rev. B 56 1601
[29] Lin J, Dellinger J, Genevet P, Cluze B, Fornel F D and Capasso F 2012 Phys. Rev. Lett. 109 093904
[30] Wang J Y, Zhao C L and Zhang J S 2010 Opt. Lett. 35 1944
[31] Zhao C and Zhang J 2011 Appl. Phys. Lett. 98 211108
[32] Zhao C L, Wang J Y, Wu X F and Zhang J S 2009 Appl. Phys. Lett. 94 111105
[33] Laluet J Y, Devaux E, Genet C and Ebbesen T W 2007 Opt. Express 15 3488
[34] Stein B, Devaux E, Genet C and Ebbesen T W 2012 Opt. Lett. 37 1916
[35] Lerman G M, Yanai A and Levy U 2009 Nano Lett. 9 2139
[36] Kim H, Park J, Cho S W, Lee S Y, Kang M and Lee B 2010 Nano Lett. 10 529
[37] Cho S W, Park J, Lee S Y, Kim H and Lee B 2012 Opt. Express 20 10083
[38] Gahagan K T and Swartzlander G A 1999 J. Opt. Soc. Am. B 16 533
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 057306
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 057306
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 057306
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 057306
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 057306
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 057306
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 057306
[8] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 057306
[9] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 057306
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 057306
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 057306
[12] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 057306
[13] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 057306
[14] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 057306
[15] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 057306
Viewed
Full text


Abstract