Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 057307    DOI: 10.1088/0256-307X/31/5/057307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Role of Oxygen Vacancy Arrangement on the Formation of a Conductive Filament in a ZnO Thin Film
ZHAO Jing1,2,3, DONG Jing-Yu1,2, ZHAO Xu1,2, CHEN Wei1,2**
1College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang 050024
2Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024
3Department of Physics and Electrical Engineering, Handan College, Handan 056005
Cite this article:   
ZHAO Jing, DONG Jing-Yu, ZHAO Xu et al  2014 Chin. Phys. Lett. 31 057307
Download: PDF(710KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We perform first-principles calculations for ZnO thin films with oxygen vacancy defects. The densities of states, partial atomic densities of states, charge density differences and atomic populations are presented. We show that the SET process, i.e., from a high resistive state to a low resistive state, is attributable to the aggregation and regular arrangement of the oxygen vacancies, which causes the formation of conductive filaments and leads to the low resistive state of the system.
Published: 24 April 2014
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.61.-r (Electrical properties of specific thin films)  
  71.55.-i (Impurity and defect levels)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/057307       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/057307
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Jing
DONG Jing-Yu
ZHAO Xu
CHEN Wei
[1] Waser R and Aono M 2007 Nat. Mater. 6 833
[2] Sawa A 2008 Mater. Today 11 28
[3] Zhang F et al 2012 Solid State Commun. 152 1630
[4] Lee J K et al 2012 Appl. Phys. Lett. 101 103506
[5] Bertaud T et al 2012 Appl. Phys. Lett. 101 143501
[6] Schulman A et al 2012 Phys. Rev. B 86 104426
[7] Xu D L et al 2013 Chin. Phys. B 22 117314
[8] Zhao J W et al 2012 Chin. Phys. B 21 065201
[9] Yuan X Y et al 2013 Chin. Phys. B 22 107702
[10] Chen A et al 2007 Appl. Phys. Lett. 91 123517
[11] Kim D C et al 2006 Appl. Phys. Lett. 88 202102
[12] Fujii T et al 2005 Appl. Phys. Lett. 86 012107
[13] Guo X et al 2007 Appl. Phys. Lett. 91 133513
[14] Waser R et al 2009 Adv. Mater. 21 2632
[15] Xu N et al 2008 Appl. Phys. Lett. 92 232112
[16] Xu P et al 2013 Nanotechnology 24 305401
[17] Zhang H et al 2013 J. Mater. Chem. A 1 2231
[18] Anisimov V I et al 1991 Phys. Rev. B 44 943
[19] Anisimov V I et al 1993 Phys. Rev. B 48 16929
[20] Vladimir I A et al 1997 J. Phys.: Condens. Matter 9 767
[21] Vanderbilt D 1990 Phys. Rev. B 41 7892
[22] Segall M D et al 2002 J. Phys.: Condens. Matter 14 2717
[23] Sheetz R M et al 2009 Phys. Rev. B 80 195314
[24] Ermoshin V A and Veryazov V A 1995 Phys. Status Solidi B 189 K49
[25] Janotti A and Van de Walle C G 2005 Appl. Phys. Lett. 87 122102
[26] Sarma R and Saikia D 2011 IEEE Electron Device Lett. 32 209
[27] Magyari-K?pe B et al 2012 J. Mater. Sci. 47 7498
Related articles from Frontiers Journals
[1] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 057307
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 057307
[3] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 057307
[4] Shenshen Yan, Yi Wang, Zhibin Gao, Yang Long, and Jie Ren. Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe[J]. Chin. Phys. Lett., 2021, 38(2): 057307
[5] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 057307
[6] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 057307
[7] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 057307
[8] Yu-Lu Zheng , Liang Li, Fang-Fei Li , Qiang Zhou, and Tian Cui . Pressure-Dependent Phonon Scattering of Layered GaSe Prepared by Mechanical Exfoliation[J]. Chin. Phys. Lett., 2020, 37(8): 057307
[9] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 057307
[10] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 057307
[11] Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao, Li-Min Liu, Jia-Xin Yin, Rui Wu, Gen-Fu Chen, Zi-Qiang Wang, Shuheng H. Pan. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(11): 057307
[12] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 057307
[13] Hong-Ping Yang, Hai-Hong Bao, Li-Li Han, Wen-Juan Yuan, Jun Luo, Jing Zhu. Different Charging-Induced Modulations of Highest Occupied Molecular Orbital Energies in Fullerenes in Comparison with Carbon Nanotubes and Graphene Sheets[J]. Chin. Phys. Lett., 2018, 35(12): 057307
[14] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 057307
[15] Yue-Qin Wang, Yin Liu, Ming-Xu Zhang, Fan-Fei Min. Electronic Structure and Visible-Light Absorption of Transition Metals (TM=Cr, Mn, Fe, Co) and Zn-Codoped SrTiO$_{3}$: a First-Principles Study[J]. Chin. Phys. Lett., 2018, 35(1): 057307
Viewed
Full text


Abstract