CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electroforming-Free and Highly Uniform Al2O3 Resistive Random Access Memory by ALD-Based In Situ Hydrogen Plasma Treatment |
WU Hua-Yu1, ZHANG Jian1, ZHANG Qi-Long1**, YANG Hui1, LUO Ji-Kui2,3** |
1Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 2Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 3Institute of Material Research and Innovation, Bolton University, Deane Road Bolton BL3 5AB, United Kingdom
|
|
Cite this article: |
WU Hua-Yu, ZHANG Jian, ZHANG Qi-Long et al 2014 Chin. Phys. Lett. 31 057305 |
|
|
Abstract Al2O3 resistive random access memory (RRAM) with electroforming-free characteristics, high stability and uniform properties is fabricated. The effect of the in situ hydrogen plasma enhanced treatment on the device performance is investigated. The dominated conduction mechanisms of the devices are ohmic behavior at low fields and space charge limited charge injection at high fields. The great improvement in the device properties is attributed to the hydrogen plasma treatment with the Al2O3 film, and this simple while effective atomic layer deposition based plasma treatment process is expected to be useful for other RRAM material systems as well.
|
|
Published: 24 April 2014
|
|
PACS: |
73.40.Rw
|
(Metal-insulator-metal structures)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
|
|
|
[1] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632 [2] Shang D S, Sun J R, Shen B G and Matthias W 2013 Chin. Phys. B 22 067202 [3] Zhang J, Yang H, Zhang Q L, Dong S R and Luo J K 2013 Appl. Phys. Lett. 102 012113 [4] Tan T T, Chen X, Guo T T and Liu Z T 2013 Chin. Phys. Lett. 30 107302 [5] Li Y T, Long S B, Lv H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S and Liu M 2011 Chin. Phys. B 20 017305 [6] Zhang T, Bai Y, Jia C H and Zhang W F 2012 Chin. Phys. B 21 107304 [7] Yuan X Y, Luo L R, Wu D and Xu Q Y 2013 Chin. Phys. B 22 107702 [8] Chen Y C, Su Y K, Huang C Y, Yu H C, Cheng C Y and Chang T H 2011 Appl. Phys. Express 4 054204 [9] Syu Y E, Chang T C, Tsai T M, Chang G W and Chang K C 2012 Appl. Phys. Lett. 100 022904 [10] Kim S and Choi Y K 2008 Appl. Phys. Lett. 92 223508 [11] Wu Y, Yu S M, Lee B and Wong P 2011 J. Appl. Phys. 110 094104 [12] Lin C Y, Wu C Y, Wu C Y, Hu C M and Tseng T Y 2007 J. Electrochem. Soc. 154 G189 [13] Wu Y, Lee B and Wong P 2010 IEEE Electron Device Lett. 31 1449 [14] Steven M George 2010 Chem. Rev. 110 111 [15] Chakrabarti B, Galatage R V and Vogel E M 2013 IEEE Electron Device Lett. 34 867 [16] Chen L, Gou H Y, Sun Q Q, Zhou P, Lu H L, Wang P F, Ding S J and Zhang D W 2011 IEEE Electron Device Lett. 32 794 [17] Chen P S, Chen Y S, Lee H Y, Liu W, Gu P Y, Chen F and Tsai M J 2012 Solid-State Electron. 77 41 [18] Wu Y T, Jou S and Yang P J 2013 Thin Solid Films 544 24 [19] Xu Y, Chen L, Sun Q Q, Gu J J, Lu H L, Wang P F, Ding S J and Zhang D W 2010 Solid State Commun. 150 1690 [20] Zhang J, Yang H, Zhang Q L, Jiang H, Luo J K, Zhou J H and Dong S R 2014 Appl. Phys. A (published Online) [21] Chen C, Pan F, Wang Z S, Yang J and Zeng F 2012 J. Appl. Phys. 111 013702 [22] Kozen A C, Schroeder M A, Osborn K D, Lobb C J and Rubloff G W 2013 Appl. Phys. Lett. 102 173501 [23] Puurunen R L 2005 J. Appl. Phys. 97 121301 [24] Kim S, Lee D, Park J, Jung S, Lee W, Shin J, Woo J, Choi G and Hwang H 2012 Nanotechnology 23 325702 [25] Kwon D H, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X S, Park G S, Lee B, Han S, Kim M and Hwang C S 2010 Nat. Nanotechnol. 5 148 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|