Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 113701    DOI: 10.1088/0256-307X/31/11/113701
ATOMIC AND MOLECULAR PHYSICS |
Design Optimization for Anharmonic Linear Surface-Electrode Ion Trap
LIU Wei1,2**, CHEN Shu-Ming1,2**, CHEN Ping-Xing3, WU Wei3
1College of Computer, National University of Defense Technology, Changsha 410073
2Science and Technology on PDL, National University of Defense Technology, Changsha 410073
3College of Science, National University of Defense Technology, Changsha 410073
Cite this article:   
LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing et al  2014 Chin. Phys. Lett. 31 113701
Download: PDF(504KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An accurate and rapid method is proposed to optimize anharmonic linear surface-electrode ion trap design. Based on the method, we analyze the impact of the architectural parameters, including the width, number, and applied voltage of prerequisite active electrodes, on the number and spacing of trapped ions. Sets of optimal anharmonic trap design are given. Then the optimal designs are verified by using an ant colony optimization algorithm. The results show that the maximum ion position errors and maximum ion spacing errors are less than 1 μm up to 80. The mean of the maximum errors is nearly linear with respect to the number of trapped ions.
Published: 28 November 2014
PACS:  37.10.Ty (Ion trapping)  
  03.67.Lx (Quantum computation architectures and implementations)  
  41.20.-q (Applied classical electromagnetism)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/113701       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/113701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Wei
CHEN Shu-Ming
CHEN Ping-Xing
WU Wei
[1] Kielpinski D et al 2002 Nature 417 709
[2] Wright K et al 2013 New J. Phys. 15 033004
[3] Kim J et al 2005 Quantum Inform. Comput. 5 515
[4] Liu W et al 2013 Chin. Phys. Lett. 30 123702
[5] Ji W B et al 2011 Chin. Phys. Lett. 28 073701
[6] Ladd T D et al 2010 Nature 464 45
[7] Wineland D J and Leibfried D 2011 Laser Phys. Lett. 8 175
[8] Monroe C and Kim J 2013 Science 339 1164
[9] Monz T et al 2011 Phys. Rev. Lett. 106 130506
[10] Lin G D et al 2009 Europhys. Lett. 86 60004
[11] http://www.quantum.gatech.edu/trapOverview.shtml
[12] Home J P et al 2011 New J. Phys. 13 073026
[13] Nizamani A H and Hensinger A K 2012 Appl. Phys. B 106 327
[14] James D F V 1998 Appl. Phys. B 66 181
[15] Fayaz S et al 2011 arXiv:1105.4909 [quant-ph]
[16] House M G 2008 Phys. Rev. A 78 033402
[17] Oliveira M H and Miranda J A 2001 Eur. J. Phys. 22 31
[18] http://www.comsol.com/
[19] http://www.matlab.com/
[20] Gill P E et al 1991 Numerical Linear Algebra and Optimization (New York: Addison-Wesley) vol 1 p 155
[21] Dorigo M and Gambardella L M 1997 IEEE Trans. Evolutionary Comput. 1 53
[22] Socha K and Dorigo M 2008 Eur. J. Operational Res. 185 1155
Related articles from Frontiers Journals
[1] Peng-Peng Zhou, Shao-Long Chen, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, and Ke-Lin Gao. Significantly Improving the Escape Time of a Single $^{40}$Ca$^+$ Ion in a Linear Paul Trap by Fast Switching of the Endcap Voltage[J]. Chin. Phys. Lett., 2020, 37(9): 113701
[2] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 113701
[3] Ji Li, Liang Chen, Yi-He Chen, Zhi-Chao Liu, Hang Zhang, Mang Feng. Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap[J]. Chin. Phys. Lett., 2020, 37(5): 113701
[4] Hai-Xia Li, Min Li, Qian-Yu Zhang, Xin Tong. Secular Motion Frequencies of $^{9}$Be$^{+}$ Ions and $^{40}$Ca$^{+}$ Ions in Bi-component Coulomb Crystals[J]. Chin. Phys. Lett., 2019, 36(7): 113701
[5] Meng-Yan Zeng, Yao Huang, Hu Shao, Miao Wang, Hua-Qing Zhang, Bao-Lin Zhang, Hua Guan, Ke-Lin Gao. Improvement of Stability of $^{40}$Ca$^{+}$ Optical Clock with State Preparation[J]. Chin. Phys. Lett., 2018, 35(7): 113701
[6] Jiu-Zhou He, Lei-Lei Yan, Liang Chen, Ji Li, Mang Feng. Measurement of Heating Rates in a Microscopic Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2017, 34(6): 113701
[7] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 113701
[8] Jun-Juan Shang, Kai-Feng Cui, Jian Cao, Shao-Mao Wang, Si-Jia Chao, Hua-Lin Shu, Xue-Ren Huang. Sympathetic Cooling of $^{40}$Ca$^+$–$^{27}$Al$^+$ Ion Pair Crystal in a Linear Paul Trap[J]. Chin. Phys. Lett., 2016, 33(10): 113701
[9] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 113701
[10] CHEN Ting, DU Li-Jun, SONG Hong-Fang, LIU Pei-Liang, HUANG Yao, TONG Xin, GUAN Hua, GAO Ke-Lin. Preparation of Ultracold Li+ Ions by Sympathetic Cooling in a Linear Paul Trap[J]. Chin. Phys. Lett., 2015, 32(08): 113701
[11] ZHANG Jian-Wei, MIAO Kai, WANG Li-Jun. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions[J]. Chin. Phys. Lett., 2015, 32(01): 113701
[12] LIU Pei-Liang, HUANG Yao, BIAN Wu, SHAO Hu, QIAN Yuan, GUAN Hua, GAO Ke-Lin. Preliminary Frequency Comparison of Two 40Ca+ Optical Frequency Standards[J]. Chin. Phys. Lett., 2014, 31(11): 113701
[13] LIU Hao, YANG Yu-Na, HE Yue-Hong, LI Hai-Xia, CHEN Yi-He, SHE Lei, LI Jiao-Mei. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap[J]. Chin. Phys. Lett., 2014, 31(06): 113701
[14] CAO Jian, TONG Xin, CUI Kai-Feng, SHANG Jun-Juan, SHU Hua-Lin, HUANG Xue-Ren. Simulation and Optimization of Miniature Ring-Endcap Ion Traps[J]. Chin. Phys. Lett., 2014, 31(04): 113701
[15] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. A Configurable Surface-Electrode Ion Trap Design for Quantum Information Processing[J]. Chin. Phys. Lett., 2013, 30(12): 113701
Viewed
Full text


Abstract