Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 113702    DOI: 10.1088/0256-307X/31/11/113702
ATOMIC AND MOLECULAR PHYSICS |
Preliminary Frequency Comparison of Two 40Ca+ Optical Frequency Standards
LIU Pei-Liang1,2,3, HUANG Yao1,2, BIAN Wu1,2,3, SHAO Hu1,2,3, QIAN Yuan1,2,3, GUAN Hua1,2, GAO Ke-Lin1,2**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
3University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
LIU Pei-Liang, HUANG Yao, BIAN Wu et al  2014 Chin. Phys. Lett. 31 113702
Download: PDF(654KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Frequency comparison is one of the most efficient ways to evaluate the performance of a frequency standard. Based on the pre-existing 40Ca+ optical frequency standard, we set up the second 40Ca+ optical frequency standard, which has been improved in the materials and structure of ion traps for better control of the magnetic field. After the compensation, the residual magnetic field at the position of the ion is adjusted to be ~500 nT with a long time jitter of ~10 nT, which is better than the pre-existing 40Ca+ optical frequency standard. We realize the '4-point-closed-loop locking' on the second 40Ca+ optical frequency standard after a series of preparatory works. Through half an hour of measurement time, the two frequency standards exhibited a stability of 2.1×10?13τ?1/2 and a relative frequency difference of 1.5 (2.9) Hz.
Published: 28 November 2014
PACS:  37.10.Ty (Ion trapping)  
  06.20.fb (Standards and calibration)  
  42.62.Fi (Laser spectroscopy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/113702       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/113702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Pei-Liang
HUANG Yao
BIAN Wu
SHAO Hu
QIAN Yuan
GUAN Hua
GAO Ke-Lin
[1] Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[2] Dubé P, Madej A A, Zhou Z C and Bernard J E 2013 Phys. Rev. A 87 023806
[3] Barwood G P, Huang G, Klein H A, Johnson L A M, King S A, Margolis H S, Szymaniec K and Gill P 2014 Phys. Rev. A 89 050501(R)
[4] Chwalla M, Benhelm J, Kim K, Kirchmair G, Monz T, Riebe M, Schindler P, Villar A S, H ?nsel W, Roos C F, Blatt R, Abgrall M, Santarelli G, Rovera G D and Laurent Ph 2009 Phys. Rev. Lett. 102 023002
[5] Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T and Hosokawa M 2012 Opt. Express 20 22034
[6] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215
[7] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[8] Lin Y G, Wang Q, Li Y, Lin B K, Wang S K, Meng F, Zhao Y, Cao J P, Zang E J, Li T C and Fang Z J 2013 Chin. Phys. Lett. 30 014206
[9] Zhou M and Xu X Y 2014 Chin. Phys. B 23 013202
[10] Zhang J, Zhang J, Yuan W H, Deng K, Deng A, Xu Z T, Qin C B, Lu Z H and Luo J 2013 Rev. Sci. Instrum. 84 123109
[11] Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T and Gao K 2012 Phys. Rev. A 85 030503(R)
[12] Bauch A and Meas 1980 Sci. Technol. 14 1159
[13] Levine J 1999 Rev. Sci. Instrum. 70 2567
[14] Wineland D J, Itano W M, Bergquist J C and Hulet R G 1987 Phys. Rev. A 36 2220
[15] Dehmelt H G 1982 IEEE Trans. Instrum. Meas. IM-31 83
[16] Shu H L, Guan H, Liu Q, Huang X R, Li J M and Gao K L 2005 Chin. Phys. Lett. 22 1641
[17] Shu H L, Guo B, Guan H, Liu Q, Huang X R and Gao K L 2007 Chin. Phys. Lett. 24 1217
[18] Guo B, Guan H, Liu Q, Huang Y, Huang X R and Gao K L 2010 Chin. Phys. Lett. 27 013202
[19] Guan H, Liu Q, Huang Y, Guo B, Qu W C, Cao J, Huang G L, Huang X R and Gao K L 2011 Opt. Commun. 284 217
[20] Liu Q, Huang Y, Cao J, Ou B Q, Guo B, Guan H, Huang X R and Gao K L 2011 Chin. Phys. Lett. 28 013201
[21] Huang Y, Liu Q, Cao J, Ou B Q, Liu P L, Guan H, Huang X R and Gao K L 2011 Phys. Rev. A 84 053841
[22] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
[23] Breit G 1933 Rev. Mod. Opt. 5 91
[24] Qu W, Huang Y, Guan H, Huang X and Gao K 2011 Chin. J. Lasers 38 0803008
Related articles from Frontiers Journals
[1] Peng-Peng Zhou, Shao-Long Chen, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, and Ke-Lin Gao. Significantly Improving the Escape Time of a Single $^{40}$Ca$^+$ Ion in a Linear Paul Trap by Fast Switching of the Endcap Voltage[J]. Chin. Phys. Lett., 2020, 37(9): 113702
[2] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 113702
[3] Ji Li, Liang Chen, Yi-He Chen, Zhi-Chao Liu, Hang Zhang, Mang Feng. Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap[J]. Chin. Phys. Lett., 2020, 37(5): 113702
[4] Hai-Xia Li, Min Li, Qian-Yu Zhang, Xin Tong. Secular Motion Frequencies of $^{9}$Be$^{+}$ Ions and $^{40}$Ca$^{+}$ Ions in Bi-component Coulomb Crystals[J]. Chin. Phys. Lett., 2019, 36(7): 113702
[5] Meng-Yan Zeng, Yao Huang, Hu Shao, Miao Wang, Hua-Qing Zhang, Bao-Lin Zhang, Hua Guan, Ke-Lin Gao. Improvement of Stability of $^{40}$Ca$^{+}$ Optical Clock with State Preparation[J]. Chin. Phys. Lett., 2018, 35(7): 113702
[6] Jiu-Zhou He, Lei-Lei Yan, Liang Chen, Ji Li, Mang Feng. Measurement of Heating Rates in a Microscopic Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2017, 34(6): 113702
[7] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 113702
[8] Jun-Juan Shang, Kai-Feng Cui, Jian Cao, Shao-Mao Wang, Si-Jia Chao, Hua-Lin Shu, Xue-Ren Huang. Sympathetic Cooling of $^{40}$Ca$^+$–$^{27}$Al$^+$ Ion Pair Crystal in a Linear Paul Trap[J]. Chin. Phys. Lett., 2016, 33(10): 113702
[9] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 113702
[10] CHEN Ting, DU Li-Jun, SONG Hong-Fang, LIU Pei-Liang, HUANG Yao, TONG Xin, GUAN Hua, GAO Ke-Lin. Preparation of Ultracold Li+ Ions by Sympathetic Cooling in a Linear Paul Trap[J]. Chin. Phys. Lett., 2015, 32(08): 113702
[11] ZHANG Jian-Wei, MIAO Kai, WANG Li-Jun. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions[J]. Chin. Phys. Lett., 2015, 32(01): 113702
[12] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. Design Optimization for Anharmonic Linear Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2014, 31(11): 113702
[13] LIU Hao, YANG Yu-Na, HE Yue-Hong, LI Hai-Xia, CHEN Yi-He, SHE Lei, LI Jiao-Mei. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap[J]. Chin. Phys. Lett., 2014, 31(06): 113702
[14] CAO Jian, TONG Xin, CUI Kai-Feng, SHANG Jun-Juan, SHU Hua-Lin, HUANG Xue-Ren. Simulation and Optimization of Miniature Ring-Endcap Ion Traps[J]. Chin. Phys. Lett., 2014, 31(04): 113702
[15] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. A Configurable Surface-Electrode Ion Trap Design for Quantum Information Processing[J]. Chin. Phys. Lett., 2013, 30(12): 113702
Viewed
Full text


Abstract