ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Preliminary Frequency Comparison of Two 40Ca+ Optical Frequency Standards |
LIU Pei-Liang1,2,3, HUANG Yao1,2, BIAN Wu1,2,3, SHAO Hu1,2,3, QIAN Yuan1,2,3, GUAN Hua1,2, GAO Ke-Lin1,2** |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 3University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
LIU Pei-Liang, HUANG Yao, BIAN Wu et al 2014 Chin. Phys. Lett. 31 113702 |
|
|
Abstract Frequency comparison is one of the most efficient ways to evaluate the performance of a frequency standard. Based on the pre-existing 40Ca+ optical frequency standard, we set up the second 40Ca+ optical frequency standard, which has been improved in the materials and structure of ion traps for better control of the magnetic field. After the compensation, the residual magnetic field at the position of the ion is adjusted to be ~500 nT with a long time jitter of ~10 nT, which is better than the pre-existing 40Ca+ optical frequency standard. We realize the '4-point-closed-loop locking' on the second 40Ca+ optical frequency standard after a series of preparatory works. Through half an hour of measurement time, the two frequency standards exhibited a stability of 2.1×10?13τ?1/2 and a relative frequency difference of 1.5 (2.9) Hz.
|
|
Published: 28 November 2014
|
|
|
|
|
|
[1] Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802 [2] Dubé P, Madej A A, Zhou Z C and Bernard J E 2013 Phys. Rev. A 87 023806 [3] Barwood G P, Huang G, Klein H A, Johnson L A M, King S A, Margolis H S, Szymaniec K and Gill P 2014 Phys. Rev. A 89 050501(R) [4] Chwalla M, Benhelm J, Kim K, Kirchmair G, Monz T, Riebe M, Schindler P, Villar A S, H ?nsel W, Roos C F, Blatt R, Abgrall M, Santarelli G, Rovera G D and Laurent Ph 2009 Phys. Rev. Lett. 102 023002 [5] Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T and Hosokawa M 2012 Opt. Express 20 22034 [6] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215 [7] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71 [8] Lin Y G, Wang Q, Li Y, Lin B K, Wang S K, Meng F, Zhao Y, Cao J P, Zang E J, Li T C and Fang Z J 2013 Chin. Phys. Lett. 30 014206 [9] Zhou M and Xu X Y 2014 Chin. Phys. B 23 013202 [10] Zhang J, Zhang J, Yuan W H, Deng K, Deng A, Xu Z T, Qin C B, Lu Z H and Luo J 2013 Rev. Sci. Instrum. 84 123109 [11] Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T and Gao K 2012 Phys. Rev. A 85 030503(R) [12] Bauch A and Meas 1980 Sci. Technol. 14 1159 [13] Levine J 1999 Rev. Sci. Instrum. 70 2567 [14] Wineland D J, Itano W M, Bergquist J C and Hulet R G 1987 Phys. Rev. A 36 2220 [15] Dehmelt H G 1982 IEEE Trans. Instrum. Meas. IM-31 83 [16] Shu H L, Guan H, Liu Q, Huang X R, Li J M and Gao K L 2005 Chin. Phys. Lett. 22 1641 [17] Shu H L, Guo B, Guan H, Liu Q, Huang X R and Gao K L 2007 Chin. Phys. Lett. 24 1217 [18] Guo B, Guan H, Liu Q, Huang Y, Huang X R and Gao K L 2010 Chin. Phys. Lett. 27 013202 [19] Guan H, Liu Q, Huang Y, Guo B, Qu W C, Cao J, Huang G L, Huang X R and Gao K L 2011 Opt. Commun. 284 217 [20] Liu Q, Huang Y, Cao J, Ou B Q, Guo B, Guan H, Huang X R and Gao K L 2011 Chin. Phys. Lett. 28 013201 [21] Huang Y, Liu Q, Cao J, Ou B Q, Liu P L, Guan H, Huang X R and Gao K L 2011 Phys. Rev. A 84 053841 [22] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025 [23] Breit G 1933 Rev. Mod. Opt. 5 91 [24] Qu W, Huang Y, Guan H, Huang X and Gao K 2011 Chin. J. Lasers 38 0803008 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|