Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 010303    DOI: 10.1088/0256-307X/31/1/010303
GENERAL |
Coherent Destruction of Tunneling of Dipolar Bosonic Gas
YU Zi-Fa, ZHANG Ai-Xia, XUE Ju-Kui**
Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070
Cite this article:   
YU Zi-Fa, ZHANG Ai-Xia, XUE Ju-Kui 2014 Chin. Phys. Lett. 31 010303
Download: PDF(775KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The tunneling dynamics of a dipolar bosonic gas with repulsive interactions in a periodically driven triple-well are investigated. Because of the coupled effect of long-range dipole-dipole interaction and the short-range of on-site interaction, the increase of the repulsive atomic interactions can either suppress tunneling or enhance tunneling and, thus, the system experiences rich coherent tunneling(CT)-coherent destruction of tunneling (CDT) transitions. In particular, as the repulsive atomic interactions increase, the system can undergo CT-CDT-CT-CDT or CDT-CT-CDT-CT-CDT transitions. This cannot occur in non-dipolar gas, where the increase of the repulsive atomic interaction only suppress tunneling and the system can only undergo CT-CDT transition. We further present a good understanding of the results with the help of the quasi-energy spectrum of the system.
Received: 19 November 2013      Published: 28 January 2014
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  33.80.Be (Level crossing and optical pumping)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/010303       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/010303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Zi-Fa
ZHANG Ai-Xia
XUE Ju-Kui
[1] Lin W A and Ballentine L E 1990 Phys. Rev. Lett. 65 2927
[2] Vorobeichik I and Moiseyev N 1999 Phys. Rev. A 59 2511
[3] Grossmann F et al 1991 Phys. Rev. Lett. 67 516
[4] Zhang Y Y et al 2009 Phys. Rev. Lett. 102 106401
[5] Gong J B et al 2009 Phys. Rev. Lett. 103 133002
[6] Luo X B et al 2007 Phys. Rev. A 76 051802
[7] Griesmaier A et al 2005 Phys. Rev. Lett. 94 160401
[8] Ni K K et al 2008 Science 322 231
[9] Xie Z W et al 2005 Phys. Rev. A 71 025601
[10] Zhang A X and Xue J K 2010 Phys. Rev. A 82 013606
[11] Góral K et al 2002 Phys. Rev. Lett. 88 170406
[12] Menotti C et al 2007 Phys. Rev. Lett. 98 235301
[13] Danshita I and De Melo C A R S 2009 Phys. Rev. Lett. 103 225301
[14] Yi S et al 2007 Phys. Rev. Lett. 98 260405
[15] Peter D et al 2012 J. Phys. B: At. Mol. Opt. Phys. 45 225302
[16] Lahaye T et al 2010 Phys. Rev. Lett. 104 170404
[17] Zhang A X and Xue J K 2012 J. Phys. B 45 145305
[18] Lu G B et al 2011 Phys. Rev. A 83 013407
[19] Wu Y and Yang X 2007 Phys. Rev. Lett. 98 013601
[20] Liu B et al 2007 Phys. Rev. A 75 033601
[21] Wang G F et al 2006 Phys. Rev. A 73 013619
[22] Wu B and Niu Q 2000 Phys. Rev. A 61 023402
Related articles from Frontiers Journals
[1] Haipeng Xue, Lingchii Kong, and Biao Wu. Logarithmic Quantum Time Crystal[J]. Chin. Phys. Lett., 2022, 39(8): 010303
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 010303
[3] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 010303
[4] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 010303
[5] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 010303
[6] Hao Li, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect[J]. Chin. Phys. Lett., 2020, 37(3): 010303
[7] Yu Mo, Cong Zhang, Shiping Feng, Shi-Jie Yang. Solitonic Diffusion of Wavepackets in One-Dimensional Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(12): 010303
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 010303
[9] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 010303
[10] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 010303
[11] Bao-Guo Yang, Peng-Ju Tang, Xin-Xin Guo, Xu-Zong Chen, Biao Wu, Xiao-Ji Zhou. Period-Doubled Bloch States in a Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2018, 35(7): 010303
[12] Peng Peng, Liang-Hui Huang, Dong-Hao Li, Zeng-Ming Meng, Peng-Jun Wang, Jing Zhang. Experimental Observation of Spin-Exchange in Ultracold Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(3): 010303
[13] Xu-Dan Chai, Zi-Fa Yu, Ai-Xia Zhang, Ju-Kui Xue. Sound Wave of Spin–Orbit Coupled Bose–Einstein Condensates in Optical Lattice[J]. Chin. Phys. Lett., 2017, 34(9): 010303
[14] Zheng Zhou, Hong-Hua Zhong, Bo Zhu, Fa-Xin Xiao, Ke Zhu, Jin-Tao Tan. Collision Dynamics of Dissipative Matter-Wave Solitons in a Perturbed Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(11): 010303
[15] Yu-E Li, Ju-Kui Xue. Moving Matter-Wave Solitons in Spin–Orbit Coupled Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2016, 33(10): 010303
Viewed
Full text


Abstract