GENERAL |
|
|
|
|
Stabilizing Geometric Phase by Detuning in a Non-Markovian Dissipative Environment |
XIAO Xing1, LI Yan-Ling2** |
1College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000 2School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
|
|
Cite this article: |
XIAO Xing, LI Yan-Ling 2014 Chin. Phys. Lett. 31 010302 |
|
|
Abstract The geometric phase of a two-level atom non-resonantly coupled to a non-Markovian dissipative environment is investigated. Compared to an earlier work [Chen J. J. et al. Phys. Rev. A 81 (2010) 022120] in which the non-Markovian effect has a serious correction on geometric phase, we find that the geometric phase can be stabilized by detuning in non-Markovian dissipative decoherence. Moreover, the geometric phase approaches the unitary geometric phase with the increase of detuning for any initial polar angle, which shows that the geometric phase is not only resilient to the Markovian noise but is also resilient to the non-Markovian noise when a large detuning between the qubit and environment is considered. Our results may be helpful for geometric quantum computation.
|
|
Received: 22 September 2013
Published: 28 January 2014
|
|
PACS: |
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
|
|
|
[1] Pancharatnam S 1956 Proc. Indian Acad. Sci. Sect. A 44 247 [2] Berry M V 1984 Proc. R. Soc. A 392 45 [3] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593 [4] Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339 [5] Cui X D and Zheng Y J 2012 Phys. Rev. A 86 064104 [6] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695 [7] Jones J A et al 2000 Nature 403 869 [8] Ekert A et al 2000 J. Mod. Opt. 47 2501 [9] Yan J Y, Wang L C and Yi X X 2010 Chin. Phys. B 19 040512 [10] Carollo A, Fuentes-Guridi I, Fran?a Santos M and Vedral V 2003 Phys. Rev. Lett. 90 160402 [11] Whitney R S and Gefen Y 2003 Phys. Rev. Lett. 90 190402 [12] Marzlin K P, Ghose S and Sanders B C 2004 Phys. Rev. Lett. 93 260402 [13] Zhang A P and Li F L 2013 Chin. Phys. B 22 030308 [14] Lambropoulos P, Nikolopoulos G M, Nielsen T R and Bay S 2000 Rep. Prog. Phys. 63 455 [15] Piilo J, Maniscalco S, H?rk?nen K and Suominen K A 2008 Phys. Rev. Lett. 100 180402 [16] Dublin F, Rotter D, Mukherjee M, Russo C, Eschner J and Blatt R 2007 Phys. Rev. Lett. 98 183003 [17] Lai C W, Maletinsky P, Badolato A and Imamoglu A 2006 Phys. Rev. Lett. 96 167403 [18] Galland C, Hogele A, Tureci H E and Imamoglu A 2008 Phys. Rev. Lett. 101 067402 [19] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems(Oxford: Oxford University Press) [20] Breuer H P, Burgarth D and Petruccione F 2004 Phys. Rev. B 70 045323 [21] Xiao X, Fang M F, Li Y L, Kang G D and Wu C 2010 Eur. Phys. J. D 57 447 [22] Yi X X, Wang L C and Wang W 2005 Phys. Rev. A 71 044101 [23] Chen J J, An J H, Tong Q J, Luo H G and Oh C H 2010 Phys. Rev. A 81 022120 [24] Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502 [25] Wu Y and Yang X 1997 Phys. Rev. Lett. 78 3086 [26] Wu Y and Yang X 2007 Phys. Rev. Lett. 98 013601 [27] Tong D M, Sj?qvist E, Kwek L C and Oh C H 2004 Phys. Rev. Lett. 93 080405 [28] Huang X L and Yi X X 2008 Europhys. Lett. 82 50001 [29] Banerjee S and Srikanth R 2008 Eur. Phys. J. D 46 335 [30] Fujikawa K and Hu M G 2009 Phys. Rev. A 79 052107 [31] Du J et al 2003 Phys. Rev. Lett. 91 100403 [32] Ericsson M, Achilles D, Barreiro J T, Branning D, Peters N A and Kwiat P G 2005 Phys. Rev. Lett. 94 050401 [33] Peng X, Wu S, Li J, Suter D and Du J 2010 Phys. Rev. Lett. 105 240405 [34] Cucchietti F M, et al 2010 Phys. Rev. Lett. 105 240406 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|