Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 010401    DOI: 10.1088/0256-307X/31/1/010401
GENERAL |
Oscillating Quintom Model with Time Periodic Varying Deceleration Parameter
SHEN Ming1**, ZHAO Liang2
1College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108
2Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
Cite this article:   
SHEN Ming, ZHAO Liang 2014 Chin. Phys. Lett. 31 010401
Download: PDF(355KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new law for the deceleration parameter that varies periodically with time. According to the law, we give a model of the oscillating universe with quintom matter in the framework of a 4-dimensional Friedmann–Robertson–Walker background. We find that, in the model, the Hubble parameter oscillates and keeps positive. The universe undergoes decelerating expansion and accelerating expansion alternately without singularity.
Received: 17 September 2013      Published: 28 January 2014
PACS:  04.20.Jb (Exact solutions)  
  02.30.Hq (Ordinary differential equations)  
  98.80.Cq (Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/010401       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/010401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHEN Ming
ZHAO Liang
[1] Riess A G, Filippenko1 A V, Challis P, Clocchiatti A, Diercks A, Garnavich P M, Gilliland R L, Hogan C J, Jha S, Kirshner R P, Leibundgut B, Phillips M M, Reiss D, Schmidt B P, Schommer R A, Smith R C, Spyromilio J, Stubbs C, Suntzeff N B and Tonry J 1998 Astron. J. 116 1009
[2] Perlmutter S, Aldering G, Goldhaber G, Knop R A, Nugent P, Castro P G, Deustua S, Fabbro S, Goobar A, Groom D E, Hook I M, Kim A G, Kim M Y, Lee J C, Nunes N J, Pain R, Pennypacker C R, Quimby R, Lidman C, Ellis R S, Irwin M, McMahon R G, Ruiz-Lapuente P, Walton N, Schaefer B, Boyle B J, Filippenko A V, Matheson T, Fruchter A S, Panagia N, Newberg H J M and Couch W J 1999 Astrophys. J. 517 565
[3] Riess A G, Strolger L G, Tonry J, Casertano S, Ferguson H C, Mobasher B, Challis P, Filippenko A V, Jha S, Li W D, Chornock R, Kirshner R P, Leibundgut B, Dickinson M, Livio M, Giavalisco M, Steidel C C, Benitez N and Tsvetanov Z 2004 Astrophys. J. 607 665
[4] Bennett C L, Hill R S, Hinshaw G, Nolta M R, Odegard N, Page L, Spergel D N, Weiland J L, Wright E L, Halpern M, Jarosik N, Kogut A, Limon M, Meyer S S, Tucker S G and Wollack E 2003 Astrophys. J. Suppl. Ser. 148 97
[5] Tegmark M, Strauss M A, Blanton M R, Abazajian K, Dodelson S, Sandvik H, Wang X M, Weinberg D H, Zehavi I, Bahcall N A, Hoyle F, Schlegel D, Scoccimarro R, Vogeley M S, Berlind A, Budavari T, Connolly A, Eisenstein D J, Finkbeiner D, Frieman J A, Gunn J E, Hui L, Jain B, Johnston D, Kent S, Lin H, Nakajima R, Nichol R C, Ostriker J P, Pope A, Scranton R, Seljak U, Sheth R K, Stebbins A, Szalay A S, Szapudi I, Xu Y Z, Annis J, Brinkmann J, Burles S, Castander F J, Csabai I, Loveday J, Doi M, Fukugita M, Gillespie B, Hennessy G, Hogg D W, Ivezic Z, Knapp G R, Lamb D Q, Lee B C, Lupton R H, McKay T A, Kunszt P, Munn J A, OConnell L, Peoples J, Pier J R, Richmond M, Rockosi C, Schneider D P, Stoughton C, Tucker D L, Berk D E V, Yanny B and York D G 2004 Phys. Rev. D 69 103501
[6] Copeland E J, Sami M and Tsujikawa S 2006 Int. J. Mod. Phys. D 15 1753
[7] Dodelson S, Kaplinghat M and Stewart E 2000 Phys. Rev. Lett. 85 5276
[8] Amirhashchi H, Pradhan A and Saha B 2011 Chin. Phys. Lett. 28 039801
[9] Singh M K, Verma M K and Ram S 2013 Int. J. Theor. Phys. 52 227
[10] Berman M S 1983 Nuovo Cimento B 74 182
[11] Berman M S and Gomide F M 1988Gen. Relativ. Gravitation 20 191
[12] Singh M K, Verma M K and Ram S 2013 Int. J. Theor. Phys. 52 227
[13] Yadav A K and Yadav L 2011 Int. J. Theor. Phys. 50 218
[14] Akarsu ? and Kilinc C B 2010 Gen. Relativ. Gravitation 42 119
[15] Akarsu ? and Dereli T 2012 Int. J. Theor. Phys. 51 612
[16] Nojiri S and Odintsov S D 2006 Phys. Lett. B 637 139
[17] Feng B, Wang X L and Zhang X M 2005 Phys. Lett. B 607 35
[18] Komatsu E, Smith K M, Dunkley J, Bennett C L, Gold B, Hinshaw G, Jarosik N, Larson D, Nolta M R, Page L, Spergel D N, Halpern M, Hill R S, Kogut A, Limon M, Meyer S S, Odegard V, Tucker G S, Weiland J L, Wollack E and Wright E L 2011 Astrophys. J. Suppl. Ser. 192 18
[19] Eisenstein D J, Zehavi I, Hogg D W, Scoccimarro R, Blanton M R, Nichol R C, Scranton R, Seo H J, Tegmark M, Zheng Z, Anderson S F, Annis J, Bahcall N, Brinkmann J, Burles S, Castander F J, Connolly A, Csabai I, Doi M, Fukugita M, Frieman J A, Glazebrook K, Gunn J E, Hendry J S, Hennessy G, Ivezic Z, Kent S, Knapp G R, Lin H, Loh Y S, Lupton R H, Margon B, McKay T A, Meiksin A, Munn J A, Pope A, Richmond M W, Schlegel D, Schneider D P, Shimasaku K, Stoughton C, Strauss M A, SubbaRao M, Szalay A S, Szapudi I, Tucker D L, Yanny B, and York D G 2005 Astrophys. J. 633 560
[20] Xia J Q, Vitagliano V, Liberati S and Viel M 2012 Phys. Rev. D 85 043520
[21] Xiong H H, Cai Y F, Qiu T T, Piao Y S and Zhang X M 2008 Phys. Lett. B 666 212
[22] Dariescu C and Dariescu M A 2013 Astrophys. Space Sci. 346 225
[23] Zhang K, Wu P and Yu H 2013 Phys. Rev. D 87 063513
Related articles from Frontiers Journals
[1] Jun Yang, Zuo-Nong Zhu. Higher-Order Rogue Wave Solutions to a Spatial Discrete Hirota Equation[J]. Chin. Phys. Lett., 2018, 35(9): 010401
[2] Mahamat Saleh, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. Energy and Thermodynamics of the Quantum-Corrected Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 010401
[3] Verma M. K., Chandel S., Ram Shri. Anisotropic Plane Symmetric Two-Fluid Cosmological Model with Time-Varying G and Λ[J]. Chin. Phys. Lett., 2015, 32(12): 010401
[4] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 010401
[5] ZHANG Ming, YUE Rui-Hong, YANG Zhan-Ying. Critical Behavior of Black Holes in an Einstein–Maxwell Gravity with a Conformal Anomaly[J]. Chin. Phys. Lett., 2015, 32(02): 010401
[6] P. K. Sahoo, K. L. Mahanta, D. Goit, A. K. Sinha, S. S. Xulu, U. R. Das, A. Prasad, R. Prasad. Einstein Energy-Momentum Complex for a Phantom Black Hole Metric[J]. Chin. Phys. Lett., 2015, 32(02): 010401
[7] HE Guan-Sheng, LIN Wen-Bin. The Exact Harmonic Metric for a Moving Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2014, 31(09): 010401
[8] Shri Ram, Priyanka. Bianchi Type-II Inflationary Models with Stiff Matter and Decaying Cosmological Term[J]. Chin. Phys. Lett., 2014, 31(07): 010401
[9] V. K. Shchigolev. Cosmology with an Effective Λ-Term in Lyra Manifold[J]. Chin. Phys. Lett., 2013, 30(11): 010401
[10] XUE Bo, WANG Xin. The Darboux Transformation and New Explicit Solutions for the Belov–Chaltikian Lattice[J]. Chin. Phys. Lett., 2012, 29(10): 010401
[11] Raj Bali, and Swati. LRS Bianchi Type-II Inflationary Universe with Massless Scalar Field and Time Varying Λ[J]. Chin. Phys. Lett., 2012, 29(8): 010401
[12] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 010401
[13] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 010401
[14] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 010401
[15] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 010401
Viewed
Full text


Abstract