Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 090401    DOI: 10.1088/0256-307X/30/9/090401
GENERAL |
The Energy Distribution of a Noncommutative Reissner–Nordstr?m Black Hole
Kourosh Nozari1*, A. Yazdani2
1Center for Excellence in Astronomy and Astrophysics (CEAAI-RIAAM)-Maragha, P. O. Box, 55134-441, Maragha, Iran
2Department of Physics, Faculty of Basic Sciences, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran
Cite this article:   
Kourosh Nozari, A. Yazdani 2013 Chin. Phys. Lett. 30 090401
Download: PDF(685KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the energy distribution of a noncommutative Reissner–Nordstr?m black hole. We consider both Einstein and M?ller prescriptions, and compare our results with the corresponding results obtained recently for a Schwarzschild black hole.
Received: 29 May 2013      Published: 21 November 2013
PACS:  04.70.-s (Physics of black holes)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  02.40.Gh (Noncommutative geometry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/090401       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/090401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kourosh Nozari
A. Yazdani
[1] Snyder S H 1947 Phys. Rev. 71 38
Seiberg N and Witten E 1999 J. High Energy Phys. 09 032
Douglas M R and Nekrasov N A 2001 Rev. Mod. Phys. 73 977
Szabo R J 2003 Phys. Rep. 378 207
Chaichian M et al 2003 Eur. Phys. J. C 29 413
Micu A and Sheikh-Jabbari M M 2001 J. High Energy Phys. 0101 025
[2] Smailagic A and Spallucci E 2004 J. Phys. A 37 1
Smailagic A and Spallucci E 2004 J. Phys. A 37 7169
Smailagic A and Spallucci E 2003 J. Phys. A 36 L467
Smailagic A and Spallucci E 2003 J. Phys. A 36 L517
[3] Nicolini P et al 2006 EAS Publ. Ser. 637 11
Nicolini P 2005 J. Phys. A 38 L631
Nicolini P et al 2006 Phys. Lett. B 632 547
Spallucci E et al 2009 Phys. Lett. B 670 449
Myung Y S and Yoon M 2009 Eur. Phys. J. C 62 405
Park M I 2009 Phys. Rev. D 80 084026
Nicolini P and Spallucci E 2010 Class. Quantum Grav. 27 015010
Arraut I et al 2009 Class. Quantum Grav. 26 245006
Nicolini P 2009 Int. J. Mod. Phys. A 24 1229
Arraut I et al 2010 J. Math. Phys. 51 022503
Batic D and Nicolini P 2010 Phys. Lett. B 692 32
Smailagic A and Spallucci E 2010 Phys. Lett. B 688 82
Nozari K and Mehdipour S H 2008 Europhys. Lett. 84 20008
Nozari K and Mehdipour S H 2008 Class. Quantum Grav. 25 175015
Nozari K and Mehdipour S H 2009 J. High Energy Phys. 0903 061
Nozari K and Akhshabi S 2010 Phys. Lett. B 683 186
[4] Radinschi I et al 2012 Energy Distribution for Noncommutative Radiation Schwarzschild Black Holes arXiv:1207.5714
[5] Ansoldi S et al 2007 Phys. Lett. B 645 261
[6] Nozari K and Mehdipour S H 2010 Commun. Theor. Phys. 53 503
[7] Einstein A 1915 Preuss. Akad. Wiss. Berlin 47 778
Trautman A 1962 Gravitation: an Introduction to Current Research ed Witten L (New York: Wiley) p 169
[8] M?ller C 1958 Ann. Phys. (N. Y.) 4 347
[9] Nozari K and Fazlpour B 2008 Acta Phys. Pol. B 39 1363
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 090401
[2] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole: Gravitational, Electromagnetic and Massless Dirac Perturbations[J]. Chin. Phys. Lett., 2018, 35(5): 090401
[3] Ming Zhang, Rui-Hong Yue. Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2018, 35(4): 090401
[4] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2018, 35(1): 090401
[5] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 090401
[6] Jun Liang. Regular Magnetic Black Hole Gravitational Lensing[J]. Chin. Phys. Lett., 2017, 34(5): 090401
[7] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 090401
[8] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 090401
[9] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 090401
[10] ZHANG Ruan-Jing, CHEN Ju-Hua, GAN Qiao-Shan, WANG Yong-Jiu. Time-Like Geodesic Motion in Schwarzschild Spacetime with Weak-Field Limit[J]. Chin. Phys. Lett., 2015, 32(08): 090401
[11] LIAO Ping, ZHANG Ruan-Jing, CHEN Ju-Hua, WANG Yong-Jiu. Scattering of Scalar Wave by Extended Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2015, 32(5): 090401
[12] LI Ran. Hawking Radiation of Dirac Field in the Linear Dilaton Black Hole[J]. Chin. Phys. Lett., 2014, 31(06): 090401
[13] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 090401
[14] CHEN Song-Bai, LIU Xiao-Fang, LIU Chang-Qing. PV Criticality of an AdS Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2013, 30(6): 090401
[15] A. Belhaj, M. Chabab, H. El Moumni, M. B. Sedra. On Thermodynamics of AdS Black Holes in Arbitrary Dimensions[J]. Chin. Phys. Lett., 2012, 29(10): 090401
Viewed
Full text


Abstract