Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 090304    DOI: 10.1088/0256-307X/30/9/090304
GENERAL |
Damping Law of Photocount Distribution in a Dissipative Channel
FAN Hong-Yi1**, LOU Sen-Yue1, HU Li-Yun2**
1Department of Physics, Ningbo University, Ningbo 315211
2Department of Physics, Jiangxi Normal University, Nanchang 330022
Cite this article:   
FAN Hong-Yi, LOU Sen-Yue, HU Li-Yun 2013 Chin. Phys. Lett. 30 090304
Download: PDF(449KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For a dissipative channel governed by the master equation of the density operator describing the photon loss, we find that the photocount distribution formula at time t can be related to the initial photocount distribution by replacing the efficiency of the detector ξ with ξe?2κt, as if the quantum efficiency ξ of the detector becomes ξe?2κt. This law greatly simplifies the theoretical study of the photocount distribution for quantum optical fields.
Received: 30 June 2013      Published: 21 November 2013
PACS:  03.65.-w (Quantum mechanics)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/090304       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/090304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Hong-Yi
LOU Sen-Yue
HU Li-Yun
[1] Gardiner C and Zoller P 2000 Quantum Noise (Berlin: Springer)
[2] Fan H Y and Fan Y 1998 Phys. Lett. A 246 242
[3] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[4] Preskill J 1998 Lecture Notes for Physics vol 229 Quantum Information and Computation (California Institution of Technology)
[5] Kelley P L and Kleiner W H 1964 Phys. Rev. 136 A316
[6] Scully M O and Lamb Jr. W E 1969 Phys. Rev. 179 368
[7] Mollow B R 1968 Phys. Rev. 168 1896
[8] Orszag M 2000 Quantum Optics (Berlin: Springer)
[9] Loudon R 1983 Quantum Theory of Light 2nd edn (Oxford: Oxford University Press)
[10] Jiang K, Brignac C J, Weng Y, Kim M B, Lee H and Dowling J P 2012 Phys. Rev. A 86 013826
[11] Fan H Y and Hu L Y 2008 Opt. Lett. 33 443
[12] Fan H Y, Zhou J, Xu X X and Hu L Y 2011 Chin. Phys. Lett. 28 040302
[13] Wang C C, Yuan H C and Fan H Y 2012 Chin. Phys. Lett. 29 114205
Related articles from Frontiers Journals
[1] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 090304
[2] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 090304
[3] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 090304
[4] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 090304
[5] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 090304
[6] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 090304
[7] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 090304
[8] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 090304
[9] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 090304
[10] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 090304
[11] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 090304
[12] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 090304
[13] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 090304
[14] F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 090304
[15] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 090304
Viewed
Full text


Abstract