GENERAL |
|
|
|
|
The Thermodynamical Behaviors of Kerr–Newman AdS Black Holes |
A. Belhaj1,2, M. Chabab2, H. El Moumni2*, L. Medari2, M. B. Sedra3 |
1Département de Physique, Faculté Polydisciplinaire, Université Sultan Moulay Slimane, Béni Mellal, Morocco 2High Energy Physics and Astrophysics Laboratory, FSSM, Cadi Ayyad University, Marrakesh, Morocco 3 Université Ibn Tofail, Faculté des Sciences, Département de Physique, LHESIR, Kénitra, Morocco
|
|
Cite this article: |
A. Belhaj, M. Chabab, H. El Moumni et al 2013 Chin. Phys. Lett. 30 090402 |
|
|
Abstract We reconsider the study of critical behaviors of Kerr–Newman Anti-de Sitter (AdS) black holes in four dimensions. The study is made in terms of the moduli space parameterized by the charge Q and the rotation parameter a, relating the mass M of the black hole and its angular momentum J via the relation a =J/M. Specifically, we discuss such thermodynamical behaviors in the presence of a positive cosmological constant considered as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume. The equation of state for a charged Reissner–Nordstrom AdS black hole predicts a critical universal number depending on the (Q,a) moduli space. In the vanishing limit of the a parameter, this prediction recovers the usual universal number in four dimensions. Then, we find the bounded region of the moduli space allowing the consistency of the model with real thermodynamical variables.
|
|
Received: 10 May 2013
Published: 21 November 2013
|
|
PACS: |
04.70.Dy
|
(Quantum aspects of black holes, evaporation, thermodynamics)
|
|
98.80.Cq
|
(Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))
|
|
05.70.Ce
|
(Thermodynamic functions and equations of state)
|
|
|
|
|
[1] Strominger V and Vafa C 1996 Phys. Lett. B 379 99 [2] Strominger A 1996 Phys. Lett. B 383 39 [3] Ferrara S, Kallosh R and Strominger A 1995 Phys. Rev. D 52 R5412 [4] Ferrara S and Kallosh R 1996 Phys. Rev. D 54 1514 [5] Belhaj A, Chabab M, El Moumni H and Sedra M B 2012 Chin. Phys. Lett. 29 100401 [6] Kubizňák D and Mann R B 2012 J. High Energy Phys. 1207 033 [7] Ma Z Z 2009 arXiv:0908.0357 [hep-th] [8] Hawking S and Page D 1983 Commun. Math. Phys. 87 577 [9] Chamblin A, Emparan R, Johnson C and Myers R 1999 Phys. Rev. D 60 064018 [10] Chamblin A, Emparan R, Johnson C and Myers R 1999 Phys. Rev. D 60 104026 [11] Cvetic M, Gibbons G W, Kubiznak D and Pope C N 2011 Phys. Rev. D 84 024037 [12] Dolan B P 2011 Class. Quantum Grav. 28 125020 [13] DolanB P 2011 Class. Quantum Grav. 28 235017 [14] Dolan B P 2011 Phys. Rev. D 84 127503 [15] Gunasekaran S, Kubiznak D and Mann R b 2012 J. High Energy Phys. 1211 110 [16] Aliev A N 2007 Phys. Rev. D 75 084041 [17] Caldarelli M M, Cognola G and Klemm D 2000 Class. Quantum Grav. 17 399 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|