Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 077502    DOI: 10.1088/0256-307X/30/7/077502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A First-Principles Investigation of the Carrier Doping Effect on the Magnetic Properties of Defective Graphene
LEI Shu-Lai1, LI Bin1**, HUANG Jing1,2, LI Qun-Xiang1**, YANG Jin-Long1
1Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026
2School of Materials and Chemical Engineering, Anhui University of Architecture, Hefei 230022
Cite this article:   
LEI Shu-Lai, LI Bin, HUANG Jing et al  2013 Chin. Phys. Lett. 30 077502
Download: PDF(830KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The carrier doping effects on the magnetic properties of defective graphene with a hydrogen chemisorbed single-atom vacancy (H-GSV) are investigated by performing extensive spin-polarized first-principles calculations. Theoretical results show that the quasi-localized pz-derived states around the Fermi level are responsible for the weakened magnetic moment (MM) and magnetic stabilized energy (MSE) of the H-GSV under carrier doping. The mechanism of reduced MSE in the carrier doped H-GSV can be well understood by the Heisenberg magnetic coupling model due to the response of these pz-derived states to the carrier doping. Within the examined range of carrier doping concentration, the total MM of H-GSV is always larger than 1.0μB with μB representing the Bohr magneton, which is mainly contributed by the localized sp2 states of the unsaturated C atom around the vacancy. These findings of H-GSV provide fundamental insight into defective graphene and help to understand the related experimental observations.
Received: 20 April 2013      Published: 21 November 2013
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  61.72.jd (Vacancies)  
  73.22.Pr (Electronic structure of graphene)  
  71.15.-m (Methods of electronic structure calculations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/077502       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/077502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LEI Shu-Lai
LI Bin
HUANG Jing
LI Qun-Xiang
YANG Jin-Long
[1] Yazyev O V 2010 Rep. Prog. Phys. 73 056501
[2] Sarma S D, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
[3] Dharma-wardana M W C 2007 Phys. Rev. B 75 075427
[4] Chen J H, Li L, Cullen W G, Williams E D and Fuhrer M S 2011 Nat. Phys. 7 535
[5] He H Y, Zhang Y and Pan B C 2010 J. Appl. Phys. 107 114322
[6] Esquinazi P, Spemann D, H?hne R, Setzer A, Han K H and Butz T 2003 Phys. Rev. Lett. 91 227201
[7] Talapatra S, Ganesan P G, Kim T, Vajtai R, Huang M, Shima M, Ramanath G, Srivastava D, Deevi S C and Ajayan P M 2005 Phys. Rev. Lett. 95 097201
[8] Ohldag H, Tyliszczak T, H?hne R, Spemann D, Esquinazi P, Ungureanu M and Butz T 2007 Phys. Rev. Lett. 98 187204
[9] Shukla N, Sarkar M, Banerji N, Gupta A K and Verma H C 2012 Carbon 50 1817
Lei S L, Li B, Kan E J, Huang J, Li Q X and Yang J L 2013 J. Appl. Phys. 113 213709
[10] Yazyev O V and Helm L 2007 Phys. Rev. B 75 125408
[11] Vozmediano M A H, López-Sancho M P, Stauber T and Guinea F 2005 Phys. Rev. B 72 155121
[12] Pisani L, Montanari B and Harrison N M 2008 New J. Phys. 10 033002
[13] Li W F, Zhao M W, Zhao X, Xia Y Y and Mu Y G 2010 Phys. Chem. Chem. Phys. 12 13699
[14] Lehtinen P O, Foster A S, Ma Y C, Krasheninnikov A V and Nieminen R M 2004 Phys. Rev. Lett. 93 187202
[15] Bokdam M, Khomyakov P A, Brocks G, Zhong Z C and Kelly P J 2011 Nano Lett. 11 4631
[16] Rudenko A N, Keil F J, Katsnelson M I and Lichtenstein A I 2011 Phys. Rev. B 83 045409
[17] Feng W, Lei S L, Li Q X and Zhao A D 2011 J. Phys. Chem. C 115 24858
[18] Reserbat-Plantey A, Gava P, Bendiab N and Saitta A M 2011 Europhys. Lett. 96 57001
[19] Wang T, Guo Q, Ao Z M,; Liu Y, Wang W B, Sheng K and Yu B 2011 Chin. Phys. Lett. 28 117302
[20] Margine E R and Crespi V H 2006 Phys. Rev. Lett. 96 196803
[21] Lou P and Lee J Y 2010 J. Phys. Chem. C 114 10947
[22] Alexandre S S, Lúcio A D, Neto A H C and Nunes R W 2012 Nano Lett. 12 5097
[23] Kresse G and Furthmüler J 1996 Phys. Rev. B 54 11169
[24] Kresse G and Furthmüler J 1996 Comput. Mater. Sci. 6 15
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204
[27] Sanville E, Kenny S D, Smith R and Henkelman G 2007 J. Comput. Chem. 28 899
[28] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
Related articles from Frontiers Journals
[1] Xiao-Ping Ma, Hongguo Yang, Changfeng Li, Cheng Song, and Hong-Guang Piao. Nanocavity-Mediated Fast Magnetic Vortex Core In-Situ Switching by Local Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(12): 077502
[2] Qingwei Fu, Kaiyuan Zhou, Lina Chen, Yongbing Xu, Tiejun Zhou, Dunhui Wang, Kequn Chi, Hao Meng, Bo Liu, Ronghua Liu, and Youwei Du. Field- and Current-Driven Magnetization Reversal and Dynamic Properties of CoFeB-MgO-Based Perpendicular Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2020, 37(11): 077502
[3] Chao Yang, Zheng-Chuan Wang, and Gang Su. Magnetization Reversal of Single-Molecular Magnets by a Spin-Polarized Current[J]. Chin. Phys. Lett., 2020, 37(8): 077502
[4] Juan Ren, Song-Bin Zhang, Ping-Ping Liu. Magnetic and Electronic Properties of $\beta$-Graphyne Doped with Rare-Earth Atoms[J]. Chin. Phys. Lett., 2019, 36(7): 077502
[5] Baoyue Li, Yifeng Cao, Lin Xu, Guang Yang, Zhi Ma, Miao Ye, Tianxing Ma. Anisotropy Engineering Edge Magnetism in Zigzag Honeycomb Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(6): 077502
[6] Hui-Fang Yang, Ling-Zhi Tang, Qiang Sun, Lei Sun, Zhen-Hua Li, Shu-Xia Ren. Ferromagnetism in High-Surface-Area ZnO Nanosheets Prepared by a Template-Assisted Hydrothermal Method[J]. Chin. Phys. Lett., 2018, 35(6): 077502
[7] Tian-Le Wang, Zhi-Gang Li, Li Zhang, Wei-Ping Chen, Shang-Shen Feng, Wen-Wu Zhong. Coercivity Ageing Effect on FePt Nanoparticles in Mesoporous Silica via Stepwise Synthesis Strategy[J]. Chin. Phys. Lett., 2018, 35(6): 077502
[8] Yu-Ting Liu, Li-Peng Hou, Shuang-Yang Zou, Li Zhang, Bian-Bian Liang, Yong-Chang Guo, Arfan Bukhtiar, Muhammad Umair Farooq, Bing-Suo Zou. EMP Formation in the Co(II) Doped ZnTe Nanowires[J]. Chin. Phys. Lett., 2018, 35(3): 077502
[9] Abdelkader Khouidmi, Hadj Baltache, Ali Zaoui. Magnetic and Electronic Properties of Double Perovskite Ba$_{2}$SmNbO$_{6 }$ without Octahedral Tilting by First Principle Calculations[J]. Chin. Phys. Lett., 2017, 34(7): 077502
[10] Ya-Qing Feng, Kui-Juan Jin, Chen Ge, Xu He, Lin Gu, Zhen-Zhong Yang, Hai-Zhong Guo, Qian Wan, Meng He, Hui-Bin Lu, Guo-Zhen Yang. Effect of Terraces at the Interface on the Structural and Physical Properties of La$_{0.8}$Sr$_{0.2}$MnO$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2016, 33(07): 077502
[11] Jian-Fen Hu, Lin Feng, Wen-Xing Zhang, Yong Li, Ya-Xin Lu. Detection of DNA Bases Using Fe Atoms and Graphene[J]. Chin. Phys. Lett., 2016, 33(01): 077502
[12] GUO Min-Chen, LIU Wei-Fang, WU Ping, ZHANG Hong, XU Xun-Ling, WANG Shou-Yu, RAO Guang-Hui. Enhanced Magnetic and Dielectric Properties in Low-Content Tb-Doped BiFeO3 Nanoparticles[J]. Chin. Phys. Lett., 2015, 32(06): 077502
[13] CHANG Yong-Qin, SUN Qing-Ling, LONG Yi, WANG Ming-Wen. Effect of Crystalline Quality on Magnetic Properties of Mn-Doped ZnO Nanowires[J]. Chin. Phys. Lett., 2014, 31(12): 077502
[14] SHI Li-Kun, LOU Wen-Kai. Surface States of Bi2Se3 Nanowires in the Presence of Perpendicular Magnetic Fields[J]. Chin. Phys. Lett., 2014, 31(06): 077502
[15] Murtaza Saleem, Saadat A. Siddiqi, Shahid M. Ramay, Shahid Atiq, Shahzad Naseem. Origin of Ferromagnetism in Al and Ni Co-doped ZnO Based DMS Materials[J]. Chin. Phys. Lett., 2012, 29(10): 077502
Viewed
Full text


Abstract