CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
The Effect of Multiple Interface States and nc-Si Dots in a Nc-Si Floating Gate MOS Structure Measured by their G–V Characteristics |
SHI Yong, MA Zhong-Yuan**, CHEN Kun-Ji, JIANG Xiao-Fan, LI Wei, HUANG Xin-Fan, XU Ling, XU Jun, FENG Duan |
National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
|
|
Cite this article: |
SHI Yong, MA Zhong-Yuan, CHEN Kun-Ji et al 2013 Chin. Phys. Lett. 30 077307 |
|
|
Abstract An nc-Si floating gate MOS structure is fabricated by thermal annealing of SiNx/a-Si/SiO2. There are nc-Si dots isolated by a-Si due to partial crystallization. Conductance-voltage (G–V) measurements are performed to investigate the effect of multiple interface states including Si-sub/SiO2, a-Si related (as-deposited sample) and nc-Si (annealed sample) in a charge trapping/releasing process. Double conductance peaks located in the depletion and weak inversion regions are found in our study. For the as-deposited sample, the Si-sub/SiO2 related G–V peak with weak intensity shifts to the negative as test frequency increases. The a-Si related G–V peak with strong intensity shifts slightly with the increasing frequency. For the annealed sample, little change appears in the intensity and shift of Si-sub/SiO2 related G–V peaks. The position of a-Si/nc-Si related peak is independent of frequency, and its intensity is weaker compared to that of the as-deposited sample. It is also found that as the size of nc-Si becomes larger, the a-Si/nc-Si related peak shifts to the depletion region due to the size effect of nc-Si.
|
|
Received: 18 April 2013
Published: 21 November 2013
|
|
PACS: |
73.21.-b
|
(Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)
|
|
73.21.La
|
(Quantum dots)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
|
|
|
[1] Chiang T Y, Wu Y H, Ma W C Y, Kuo P Y, Wang K T, Liao C C, Yeh C R, Yang W L and Chao 2010 IEEE Electron Device Lett. 57 1895 [2] Miyazaki S, Makihara K and Ikeda M 2008 Thin Solid Films 517 41 [3] Yang J S, Kim S, Kim Y T, Cho W J and Park J H 2008 Microelectron. J. 39 1553 [4] She M and King T J 2003 IEEE Trans. Electron Devicesces 50 1934 [5] Takata M, Kondoh S, Sakaguchi T, Choi H, Shim J C, Kurino H and Koyanagi M 2003 IEDM Tech. Dig. p 553 [6] Cho M K and Kim D M 2000 IEEE Electron Device Lett. 21 399 [7] Ziegler M, Oberl?nder M, Schroeder D, Krautschneider W H and Kohlstedt H 2012 Appl. Phys. Lett. 101 263504 [8] Bonafos C, Carrada M, Benassayag G, Chardon S S, Groenen J, Paillard V, Pecassou B, Claverie A, Dimitrakis P, Kapetanakis E, Sougleridis V I, Normand P, Sahu B and Slaoui A 2012 Mat. Sci. Semicon. Proc. 15 615 [9] Qian X Y, Chen K J, Wang Y F, Jiang X F, Ma Z Y, Fang Z H, Xu J and Huang X F 2012 J. Non-Cryst. Solids 358 2344 [10] Lu T Z, Alexe M, Scholz R, Talaev V and Zacharias M 2005 Appl. Phys. Lett. 87 202110 [11] Nicollian E H and Brews J R 1982 MOS Phys. Technol. p 285 [12] Huang S Y, Banerjee S, Tung R T and Oda S 2003 J. Appl. Phys. 94 7261 [13] Huang S Y, Banerjee S, Tung R T and Oda S 2003 J. Appl. Phys. 93 576 [14] Wang Q, Yue G Z, Li J and Han D 1999 Solid State Commun. 113 175 [15] Montelius L and Tegenfeldt J O 1993 Appl. Phys. Lett. 62 2628 [16] Wang X, Huang J, Zhang X G, Ding H L, Yu L W, Huang X F, Li W and Xu J 2008 Chin. Phys. Lett. 25 1094 [17] Ng T H, Chim W K and Choi W K 2006 Appl. Phys. Lett. 88 113112 [18] Baik S J, Choi S, Chung U and Moon J T 2004 Solid-State Electron. 48 1475 [19] Dai M, Zhang L, Bao Y, Shi J J, Chen K, Li W, Huang X F and Chen K J 2002 Chin. Phys. B 11 944 [20] Seguini G, Schamm C S, Pellegrino P and Perego M 2011 Appl. Phys. Lett. 99 082107 [21] Cho C H, Kim S K, Kim B H and Park S J 2009 Appl. Phys. Lett. 95 243108 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|