Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 077302    DOI: 10.1088/0256-307X/30/7/077302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Nuclear Dark State under Dynamical Nuclear Polarization
YU Hong-Yi**, LUO Yu, YAO Wang
Department of Physics, and Center for Theoretical and Computational Physics, The University of Hong Kong, Hong Kong
Cite this article:   
YU Hong-Yi, LUO Yu, YAO Wang 2013 Chin. Phys. Lett. 30 077302
Download: PDF(619KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We analyze aspects of nuclear dark states. The formation of the dark states prevents the further establishment of nuclear polarizations, while inhomogeneous nuclear spin precessions can result in leakage from these states. An optimal efficiency for pumping nuclear polarization is achieved when the dynamical nuclear polarization (DNP) cycling rate is comparable to the dark-state leakage rate. When the DNP rate is much larger, the nuclear spin bath can be locked on the dark states. We propose schemes where the inhomogeneous precessions can be suppressed for the realization of large-scale dark states. As the dark states correspond to low transverse nuclear field fluctuations, they can be used to suppress the decoherence of the electron induced by the nuclear spins.
Received: 27 February 2013      Published: 21 November 2013
PACS:  73.21.La (Quantum dots)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  76.70.Fz (Double nuclear magnetic resonance (DNMR), dynamical nuclear polarization)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/077302       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/077302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Hong-Yi
LUO Yu
YAO Wang
[1] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[2] Atatüre M et al 2006 Science 312 551
[3] Xu X et al 2007 Phys. Rev. Lett. 99 097401
[4] Berezovsky J et al 2008 Science 320 349
[5] Kim E D et al 2008 CLEO/QELS Conference vol 1–9 p 3593
[6] Press D et al 2008 Nature 456 218
[7] Kim D et al 2008 Phys. Rev. Lett. 101 236804
[8] Elzerman J M et al 2004 Nature 430 431
[9] Xiao M et al 2004 Nature 430 435
[10] Kim D et al 2011 Nat. Phys. 7 223
[11] Koppens F H L et al 2005 Science 309 1346
[12] Petta J R et al 2005 Science 309 2180
[13] Koppens F H L et al 2006 Nature 442 766
[14] Koppens F H L et al 2008 Phys. Rev. Lett. 100 236802
[15] Dutt M V et al 2005 Phys. Rev. Lett. 94 227403
[16] Merkulov I A et al 2002 Phys. Rev. B 65 205309
[17] Johnson A C et al 2005 Nature 435 925
[18] Bracker A S et al 2005 Phys. Rev. Lett. 94 047402
[19] Yao W, Liu R and Sham L J 2006 Phys. Rev. B 74 195301
[20] Yao W et al 2007 Phys. Rev. Lett. 98 077602
[21] Liu R, Yao W and Sham L J 2007 New J. Phys. 9 226
[22] Hahn E I 1950 Phys. Rev. 80 580
[23] Petta J R et al 2005 Science 309 2180
[24] Greilich A et al 2006 Science 313 341
[25] Greilich A et al 2007 Science 317 1896
[26] Giedke G et al 2006 Phys. Rev. A 74 032316
[27] Klauser D et al 2006 Phys. Rev. B 73 205302
[28] Stepanenko D et al 2006 Phys. Rev. Lett. 96 136401
[29] Ramon G and Hu X 2007 Phys. Rev. B 75 161301(R)
[30] Rudner M S et al 2007 Phys. Rev. Lett. 99 036602
[31] Xu X et al 2009 Nature 459 1105
[32] Reilly D J et al 2008 Science 321 817
[33] Yao W and Luo Y 2010 Europhys. Lett. 92 17008
[34] Stopa M, Krich J J and Yacoby A 2010 Phys. Rev. B 81
[35] Imamoglu A et al 2003 Phys. Rev. Lett. 91 017402
[36] Korenev L 2007 Phys. Rev. Lett. 99 256405
[37] Meier F and Zakharchenya B P 1984 Optical Orientation (Amsterdam: North-Holland)
[38] Lai C W et al 2006 Phys. Rev. Lett. 96 167403
[39] Braun P F et al 2005 Phys. Rev. Lett. 94 116601
[40] Tartakovskii A I et al 2007 Phys. Rev. Lett. 98 026806
[41] Ono K and Tarucha S 2004 Phys. Rev. Lett. 92 256803
[42] Wald K R et al 1994 Phys. Rev. Lett. 73 1011
[43] Taylor J M et al 2003 Phys. Rev. Lett. 91 246802
[44] Saikin S and Fedichkin L 2003 Phys. Rev. B 67 161302
[45] Maze J R et al 2008 Phys. Rev. B 78 094303
[46] Cywiński L et al 2010 Phys. Rev. B 82 035315
[47] Hale E B and Mieher R L 1969 Phys. Rev. 184 739
[48] Yao W 2011 Phys. Rev. B 83 201308(R)
[49] Luo Y, Yu H and Yao W 2012 Phys. Rev. B 85 155304
[50] Jacques V et al 2009 Phys. Rev. Lett. 102 057403
[51] Wrachtrup J et al 2001 Opt. Spectrosc. 91 429
[52] Yu H, Luo Y and Yao W 2011 Phys. Rev. A 84 032337
[53] Sherwin M S et al 1999 Phys. Rev. A 60 3508
[54] Wang Q Q et al 2005 Phys. Rev. Lett. 95 187404
[55] Chekhovich E A et al 2010 Phys. Rev. Lett. 104 066804
[56] Chekhovich E A et al 2011 Phys. Rev. B 83 125318
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 077302
[2] Jiyuan Bai, Kongfa Chen, Pengyu Ren, Jianghua Li, Zelong He, and Li Li. Fano Effect and Spin-Polarized Transport in a Triple-Quantum-Dot Interferometer Attached to Two Ferromagnetic Leads[J]. Chin. Phys. Lett., 2020, 37(12): 077302
[3] Li-Guo Qin, Qin Wang. Modulating the Lasing Performance of the Quantum Dot-Cavity System by Adding a Resonant Driving Field[J]. Chin. Phys. Lett., 2017, 34(1): 077302
[4] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 077302
[5] Hui-Li Yin, Su-Ling Zhao, Zheng Xu, Li-Zhi Sun. Light-Emitting Diodes Based on All-Quantum-Dot Multilayer Films and the Influence of Various Hole-Transporting Layers on the Performance[J]. Chin. Phys. Lett., 2016, 33(03): 077302
[6] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 077302
[7] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 077302
[8] LI Jian, ZHANG Dong. Single- and Few-Electron States in Deformed Topological Insulator Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(4): 077302
[9] JEONG Heejun. Current Fluctuations in a Semiconductor Quantum Dot with Large Energy Spacing[J]. Chin. Phys. Lett., 2014, 31(12): 077302
[10] LI Bo-Xin, ZHENG Jun, CHI Feng. Rectification Effect of the Heat Generation by Electric Current in a Quantum Dot Molecular[J]. Chin. Phys. Lett., 2014, 31(05): 077302
[11] LV Xue-Qin, JIN Peng, CHEN Hong-Mei, WU Yan-Hua, WANG Fei-Fei, WANG Zhan-Guo. Broadband Light Emission from Chirped Multiple InAs Quantum Dot Structure[J]. Chin. Phys. Lett., 2013, 30(11): 077302
[12] A. Azhagu Parvathi, A. John Peter, Chang Kyoo Yoo. Nonlinear Optical Properties in a Quantum Dot of Some Polar Semiconductors[J]. Chin. Phys. Lett., 2013, 30(10): 077302
[13] LI Zhen-Shan, PAN Hui, LÜ Rong. Spin-Polarized Currents in Double Quantum Dots with Rashba Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2013, 30(8): 077302
[14] QIAN Xin-Ye, CHEN Kun-Ji, HUANG Jian, WANG Yue-Fei, FANG Zhong-Hui, XU Jun, HUANG Xin-Fan . Room-Temperature Multi-Peak NDR in nc-Si Quantum-Dot Stacking MOS Structures for Multiple Value Memory and Logic[J]. Chin. Phys. Lett., 2013, 30(7): 077302
[15] SHI Yong, MA Zhong-Yuan, CHEN Kun-Ji, JIANG Xiao-Fan, LI Wei, HUANG Xin-Fan, XU Ling, XU Jun, FENG Duan . The Effect of Multiple Interface States and nc-Si Dots in a Nc-Si Floating Gate MOS Structure Measured by their GV Characteristics[J]. Chin. Phys. Lett., 2013, 30(7): 077302
Viewed
Full text


Abstract