GENERAL |
|
|
|
|
Brownian Motion and the Temperament of Living Cells |
Roumen Tsekov1**, Marga C. Lensen2 |
1Department of Physical Chemistry, University of Sofia, 1164 Sofia, Bulgaria 2Institut für Chemie, Technische Universit?t Berlin, 10623 Berlin, Germany
|
|
Cite this article: |
Roumen Tsekov, Marga C. Lensen 2013 Chin. Phys. Lett. 30 070501 |
|
|
Abstract The migration of living cells usually obeys the laws of Brownian motion. While the latter is due to the thermal motion of the surrounding matter, the locomotion of cells is generally associated with their vitality. We study what drives cell migration and how to model memory effects in the Brownian motion of cells. The concept of temperament is introduced as an effective biophysical parameter driving the motion of living biological entities in analogy with the physical parameter of temperature, which dictates the movement of lifeless physical objects. The locomemory of cells is also studied via the generalized Langevin equation. We explore the possibility of describing cell locomemory via the Brownian self-similarity concept. An heuristic expression for the diffusion coefficient of cells on structured surfaces is derived.
|
|
Received: 09 April 2013
Published: 21 November 2013
|
|
PACS: |
05.40.Jc
|
(Brownian motion)
|
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
87.17.-d
|
(Cell processes)
|
|
|
|
|
[1] Eisenbach M and Lengeler J W 2004 Chemotaxis (London: Imperial College Press) [2] Stroka K M and Aranda-Espinoza H 2009 Cell Motil. Cytoskeleton 66 328 [3] Stefanoni F, Ventre M, Mollica F and Netti P A 2011 J. Theor. Biol. 280 150 [4] Dunn G A and Brown A F 1987 J. Cell Sci. Suppl. 8 81 [5] Stokes C L, Lauffenburger D A and Williams S K 1991 J. Cell Sci. 99 419 [6] Schienbein M and Gruler H 1993 Bull. Math. Biol. 55 585 [7] Berg H C 2004 E. Coli in Motion (New York: Springer) [8] Selmeczi D, Mosler S, Hagedorn P H, Larsen N B and Flyvbjerg H 2005 Biophys. J. 89 912 [9] Hartman R S, Lau K, Chou W and Coates T D 1994 Biophys. J. 67 2535 [10] Upadhyaya A, Rieu J P, Glazier J A and Sawada Y 2001 Physica A 293 549 [11] Selmeczi D, Li L, Pedersen L I I, Nrrelykke S F, Hagedorn P H, Mosler S, Larsen N B, Cox E C and Flyvbjerg H 2008 Eur. Phys. J. Spec. Top. 157 1 [12] Dieterich P, Klages R, Preuss R and Schwab A 2008 Proc. Natl. Acad. Sci. USA 105 459 [13] B?deker H U, Beta C, Frank T D and Bodenschatz E 2010 Europhys. Lett. 90 28005 [14] Campos D, Mendez V and Llopis I 2010 J. Theor. Biol. 267 526 [15] Langevin P 1908 Comp. Rend. Acad. Sci. (Paris) 146 530 [16] Zwanzig R 1960 J. Chem. Phys. 33 1338 [17] Mori H 1965 Prog. Theor. Phys. 33 423 [18] Tsekov R and Ruckenstein E 1994 J. Chem. Phys. 101 7844 [19] Frey E and Kroy K 2005 Ann. Phys. (Leipzig) 14 20 [20] Codling E A, Plank M J and Benhamou S 2008 J. R. Soc. Interface 5 813 [21] Schweitzer F 2002 Brownian Agents and Active Particles (Berlin: Springer) [22] Lindner B and Nicola E M 2008 Eur. Phys. J. Spec. Top. 157 43 [23] Glück A, Hüffel H and Iliji? S 2009 Phys. Rev. E 79 021120 [24] Reynolds A M 2010 Physica A 389 273 [25] Tsekov R and Radoev B 1992 J. Phys.: Condens. Matter 4 L303 [26] Lee M H 1992 J. Phys.: Condens. Matter 4 10487 [27] Schr?dinger E 1944 What is Life ? (Cambridge: Cambridge University Press) [28] Schienbein M, Franke K and Gruler H 1994 Phys. Rev. E 49 5462 [29] Kim Y C 1996 Korean J. Chem. Eng. 13 282 [30] Pottier N 2005 Physica A 345 472 [31] Lifson S and Jackson J L 1962 J. Chem. Phys. 36 2410 [32] Festa R and d'Agliano E G 1978 Physica A 90 229 [33] Vayssilov G and Tsekov R 1992 Chem. Phys. Lett. 188 497 [34] Tsekov R and Radoev B 1991 Commun. Dept. Chem. Bulg. Acad. Sci. 24 576 [35] Rubin R J 1963 Phys. Rev. 131 964 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|