Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 070502    DOI: 10.1088/0256-307X/30/7/070502
GENERAL |
Adaptive Synchronization and Anti-Synchronization of a Chaotic Lorenz–Stenflo System with Fully Unknown Parameters
M. Mossa Al-sawalha**
Mathematics Department, Faculty of Science, University of Hail, Kingdom of Saudi Arabia
Cite this article:   
M. Mossa Al-sawalha 2013 Chin. Phys. Lett. 30 070502
Download: PDF(443KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An adaptive control scheme is developed to study the synchronization and the anti-synchronization behaviors between two identical Lorenz–Stenflo systems with unknown parameters. This adaptive controller is designed based on Lyapunov stability theory and an analytic expression of the controller with its adaptive laws of parameters is shown. Theoretical analysis and numerical simulations are shown to verify the results.
Received: 07 February 2013      Published: 21 November 2013
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  47.52.+j (Chaos in fluid dynamics)  
  89.75.-k (Complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/070502       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/070502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Mossa Al-sawalha
[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Al-Sawalha M M and Noorani M S M 2008 Chin. Phys. Lett. 25 2743
[3] Al-Sawalha M M and Noorani M S M 2009 Chaos Solitons Fractals 42 170
[4] Al-Sawalha M M and Noorani M S M 2009 Chin. Phys. Lett. 26 092901
[5] Banerjee S, Saha P and Chowdhury A R 2004 Int. J. Non-Linear Mech. 39 25
[6] Stenflo L 1996 Phys. Scr. 53 83
[7] Liu Z 2000 Phys. Scr. 61 526
[8] Zhou C T 1997 J. Math. Phys. 38 5225
[9] Banerjee S, Saha P and Chowdhury A R 2001 Phys. Scr. 63 177
[10] Liu Z 2000 Phys. Scr. 61 530
[11] Banerjee S, Saha P and Chowdhury A R 2004 Int. J. Non-Linear Mech. 39 25
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 070502
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 070502
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 070502
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 070502
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 070502
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 070502
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 070502
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 070502
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 070502
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 070502
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 070502
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 070502
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 070502
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 070502
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 070502
Viewed
Full text


Abstract