Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 070202    DOI: 10.1088/0256-307X/30/7/070202
GENERAL |
Multisymplectic Scheme for the Improved Boussinesq Equation
CAI Jia-Xiang1,2**, QIN Zhi-Lin1, BAI Chuan-Zhi1
1School of Mathematics Science, Huaiyin Normal University, Huai'an 223300
2Jiangsu Key Laboratory for NSLSCS, School of Mathematics Science, Nanjing Normal University, Nanjing 210046
Cite this article:   
CAI Jia-Xiang, QIN Zhi-Lin, BAI Chuan-Zhi 2013 Chin. Phys. Lett. 30 070202
Download: PDF(470KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We first note that the improved Boussinesq equation has a multisymplectic structure. Based on it, a multisymplectic scheme is proposed. Dispersion relations analysis and linear stability analysis show that the proposed scheme has excellent properties. Numerical results confirm the excellent long-term behavior of the proposed scheme.
Received: 09 April 2013      Published: 21 November 2013
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  45.10.Na (Geometrical and tensorial methods)  
  45.20.dh (Energy conservation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/070202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/070202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Jia-Xiang
QIN Zhi-Lin
BAI Chuan-Zhi
[1] Iskandar L and Jain P C 1980 Proc. Indian Academy Sci. (Math. Sci.) 89 171
[2] E I-Zoheiry H 2002 Chaos Solitons Fractals 14 377
[3] Inc M and Evans D J 2004 Int. J. Comput. Math. 81 313
[4] Bratsos A G 2007 Phys. Lett. A 370 145
[5] Bratsos A G 2009 Chaos Solitons Fractals 40 2083
[6] Lin Q et al S 2009 J. Comput. Appl. Math. 224 658
[7] Irk D and Da? I 2010 Numer. Methods Partial Differ. Eq. 26 1316
[8] Marsden J E et al 1998 Commun. Math. Phys. 199 351
[9] Bridges T J and Reich S 2001 Phys. Lett. A 284 184
[10] Hong J L and Kong L H 2010 Commun. Comput. Phys. 7 613
[11] Kong L H et al 2010 Comput. Phys. Commun. 181 1369
[12] Sun Y and Tse P S P 2011 J. Comput. Phys. 230 2076
[13] Cai J X and Liang H 2012 Chin. Phys. Lett. 29 080201
[14] Qian X et al 2012 Chin. Phys. B 21 070206
[15] Wang J 2009 J. Phys. A: Math. Theor. 42 085205
[16] Ascher U M and McLachlan R I 2004 Appl. Numer. Math. 48 255
[17] Cai J X et al 2013 Chin. Phys. B 22 030209
[18] Moore B E and Reich S 2003 Numer. Math. 95 625
Related articles from Frontiers Journals
[1] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift *[J]. Chin. Phys. Lett., 0, (): 070202
[2] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift[J]. Chin. Phys. Lett., 2020, 37(6): 070202
[3] Chuan-Jie Hu, Ya-Li Zeng, Yi-Neng Liu, Huan-Yang Chen. Three-Dimensional Broadband Acoustic Waveguide Cloak[J]. Chin. Phys. Lett., 2020, 37(5): 070202
[4] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 070202
[5] Hong-Mei Zhang, Cheng Cai, Xiu-Jun Fu. Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann–Beenker Tiling[J]. Chin. Phys. Lett., 2018, 35(6): 070202
[6] Xiang Li, Xu Qian, Bo-Ya Zhang, Song-He Song. A Multi-Symplectic Compact Method for the Two-Component Camassa–Holm Equation with Singular Solutions[J]. Chin. Phys. Lett., 2017, 34(9): 070202
[7] Xiang Li, Xu Qian, Ling-Yan Tang, Song-He Song. A High-Order Conservative Numerical Method for Gross–Pitaevskii Equation with Time-Varying Coefficients in Modeling BEC[J]. Chin. Phys. Lett., 2017, 34(6): 070202
[8] Jian Liu, Bao-He Li, Xiao-Song Chen. Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2017, 34(5): 070202
[9] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 070202
[10] Ling-Yan Lin, Yu Qiu, Yu Zhang, Hao Zhang. Analysis of Effect of Zn(O,S) Buffer Layer Properties on CZTS Solar Cell Performance Using AMPS[J]. Chin. Phys. Lett., 2016, 33(10): 070202
[11] Mahdi Ezheiyan, Hossein Sadeghi, Mohammad-Hossein Tavakoli. Thermal Analysis Simulation of Germanium Zone Refining Process Assuming a Constant Radio-Frequency Heating Source[J]. Chin. Phys. Lett., 2016, 33(05): 070202
[12] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 070202
[13] JI Ying, WANG Ya-Wei. Bursting Behavior in the Piece-Wise Linear Planar Neuron Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2015, 32(4): 070202
[14] TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong, YANG Jun-Zhong. Collective Dynamics for Network-Organized Identical Excitable Nodes[J]. Chin. Phys. Lett., 2015, 32(02): 070202
[15] M. N. Stankov, M. D. Petković, V. Lj. Marković, S. N. Stamenković, A. P. Jovanović. The Applicability of Fluid Model to Electrical Breakdown and Glow Discharge Modeling in Argon[J]. Chin. Phys. Lett., 2015, 32(02): 070202
Viewed
Full text


Abstract