Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 068501    DOI: 10.1088/0256-307X/30/6/068501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
The Effects of Polarization on the Current Transport Mechanisms for UV-LEDs
MA Ji-Zhao, DONG Ke-Xiu, CHEN Dun-Jun**, LU Hai, CHEN Peng, ZHANG Rong, ZHENG You-Dou
Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing National Laboratory of Microstructure, School of Electronics Science and Engineering, Nanjing University, Nanjing 210093
Cite this article:   
MA Ji-Zhao, DONG Ke-Xiu, CHEN Dun-Jun et al  2013 Chin. Phys. Lett. 30 068501
Download: PDF(576KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of a polarization field on the current transport mechanisms in ultraviolet light emitting diodes (UV-LEDs) are studied by analyzing forward current-voltage (IV) characteristics based on the experimental data and theoretical simulation. The results indicate that polarization electric field suppresses the diffusion current and meanwhile enhances the tunneling current in the metal-face UV LEDs under forward bias. The presence of a large polarization field in the deep UV-LEDs is responsible for the current transport mechanism dominated by the tunneling process at a moderate forward bias.
Received: 05 February 2013      Published: 31 May 2013
PACS:  85.60.Jb (Light-emitting devices)  
  73.50.-h (Electronic transport phenomena in thin films)  
  71.20.Nr (Semiconductor compounds)  
  71.55.Eq (III-V semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/068501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/068501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Ji-Zhao
DONG Ke-Xiu
CHEN Dun-Jun
LU Hai
CHEN Peng
ZHANG Rong
ZHENG You-Dou
[1] Jain R, Sun W, Yang J, Shatalov M and Hu X 2008 Appl. Phys. Lett. 93 051113
[2] Taniyasu Y, Kasu M and Makimoto T 2006 Nature 441 325
[3] Hu X, Deng J, Zhang J P et al 2006 Phys. Status Solidi A 203 1815
[4] Zhang J P, Khan M A, Sun W H et al 2002 Appl. Phys. Lett. 81 4392
[5] Shakya J, Knabe K, Kim K H, Li J et al 2005 Appl. Phys. Lett. 86 091107
[6] Masui H, Asamizu H, Melo T et al 2009 J. Phys. D: Appl. Phys. 42 135106
[7] Shur M S and Gaska R 2010 IEEE Trans. Electron Devices 57 12
[8] Deng J, Bilenko Y, Lunev A et al 2007 Jpn. J. Appl. Phys. 46 263
[9] Yang L, Ma X H, Feng Q, Hao Y 2008 Chin. Phys. B 17 2696
[10] Lee S W, Oh D C, Goto H, Ha J S, Lee H J et al 2006 Appl. Phys. Lett. 89 132117
[11] Cao X A, Stokes E B, Sandvik P M et al 2002 IEEE Electron Device Lett. 23 535
[12] Mu S, Yu T J, Huang L B et al 2007 Chin. Phys. Lett. 24 3245
[13] Witte H, Rohrbeck A et al 2011 Phys. Status Solidi A 208 1597
[14] Perlin P, Osinski M, Eliseev P G et al 1996 Appl. Phys. Lett. 69 1680
[15] Yan Q R, Zhang Y, Yan Q A et al 2012 Acta Phys. Sin. 61 036103 (in Chinese)
[16] Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 55
[17] Yu E T, Sullivan G J, Asbeck P M et al 1997 Appl. Phys. Lett. 71 2794
[18] Cao X A, Teetsov J M, D'Evelyn M P et al 2004 Appl. Phys. Lett. 85 7
[19] Bochkareva N I, Voronenkov V V, Gorbunov R I et al 2010 Appl. Phys. Lett. 96 133502
[20] Yeh P C, Hwa M C, Yu J W et al 2009 Phys. Status Solidi C 6 S538
[21] Ganichev S D, Ziemann E, Prettl W et al 2000 Phys. Rev. B 61 10361
[22] Shan Q F, Meyaard D S, Dai Q et al 2011 Appl. Phys. Lett. 99 253506
[23] Baber N, Scheffler H, Ostmann A et al 1992 Phys. Rev. B 45 4043
Related articles from Frontiers Journals
[1] Jingrui Ma, Haodong Tang, Xiangwei Qu, Guohong Xiang, Siqi Jia, Pai Liu, Kai Wang, and Xiao Wei Sun. A $dC/dV$ Measurement for Quantum-Dot Light-Emitting Diodes[J]. Chin. Phys. Lett., 2022, 39(12): 068501
[2] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 068501
[3] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 068501
[4] Xue-Hui Tao, Yong Yang. Theoretical Modeling of Luminous Efficacy for High-Power White Light-Emitting Diodes[J]. Chin. Phys. Lett., 2017, 34(3): 068501
[5] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 068501
[6] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 068501
[7] Qian-Qian Yu, Xu Zhang, Jing-Xuan Bi, Guan-Ting Liu, Qi-Wen Zhang, Xiao-Ming Wu, Yu-Lin Hua, Shou-Gen Yin. Efficiency of Blue Organic Light-emitting Diodes Enhanced by Employing an Exciton Feedback Layer[J]. Chin. Phys. Lett., 2016, 33(08): 068501
[8] Yuan-Yuan Hou, Jiang-Hong Li, Xiao-Xiang Ji, Ya-Feng Wu, Wei Fan, Igbari Femi. Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer[J]. Chin. Phys. Lett., 2016, 33(07): 068501
[9] Yao Xu, Yu-Ting Zhang, Zhi-Qi Kou, Shuang Cheng, Sheng-Li Bu. A Mixed Host Emitting Interlayer Based on CBP:TPBi in Green Phosphorescent Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(04): 068501
[10] Jun Sun, Min Xi, Zi-Sheng Su, Hai-Xiao He, Mi Tian, Hong-Yan Li, Hong-Ke Zhang, Tao Mao, Yu-Xiang Zhang. Highly Efficient Greenish-Yellow Phosphorescent Organic Light-Emitting Diodes Based on a Novel 2,3-Diphenylimidazo[1,2-a]Pyridine Iridium(III) Complex[J]. Chin. Phys. Lett., 2016, 33(03): 068501
[11] Shuang Cheng, Jian-Qi Shen, Zhi-Qi Kou, Xiao-Ping Wang. Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer[J]. Chin. Phys. Lett., 2016, 33(02): 068501
[12] DING Lei, LI Huai-Kun, ZHANG Mai-Li, CHENG Jun, ZHANG Fang-Hui. High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch[J]. Chin. Phys. Lett., 2015, 32(10): 068501
[13] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 068501
[14] ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen, DONG Jun, YAN Xue-Wen, HOU Xun. Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory[J]. Chin. Phys. Lett., 2015, 32(08): 068501
[15] LIU Wei, LIU Guo-Hong, LIU Yong, LI Bao-Jun, ZHOU Xiang. Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer[J]. Chin. Phys. Lett., 2015, 32(07): 068501
Viewed
Full text


Abstract