CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
The Growth and Fabrication of InGaN/GaN Multi-Quantum Well Solar Cells on Si(111) Substrates |
LI Zhi-Dong1,2, XIAO Hong-Ling1,2**, WANG Xiao-Liang1,2,3,4, WANG Cui-Mei1,2, DENG Qing-Wen1,2 JING Liang1,2, DING Jie-Qin1,2, WANG Zhan-Guo1,2, HOU Xun4 |
1Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083 3ISCAS-XJTU Joint Laboratory of Functional Materials and Devices for Informatics, Beijing 100083 4Xi'an Jiaotong University, Xi'an 710049
|
|
Cite this article: |
LI Zhi-Dong, XIAO Hong-Ling, WANG Xiao-Liang et al 2013 Chin. Phys. Lett. 30 068402 |
|
|
Abstract Metalorganic chemical vapor deposition of a crack-free mirror-like surface of InGaN/GaN MQWs on Si (111) substrate is demonstrated, and an InGaN/GaN MQWs solar cell device is fabricated. Photo response measurement of the solar cell devices shows that the fill factor FF = 49.4%, open circuit voltage Voc=0.32 V, and short circuit current Jsc=0.07 mA/cm2, under AM 1.5 G illumination. In order to analyze the influence of material quality on the performance of solar cells, XRD, SEM and Raman scattering experiments are carried out. It is found that insertion of a proper top AlN layer can effectively improve the material quality, and therefore enhance the photovoltaic performance of the fabricated device.
|
|
Received: 27 March 2013
Published: 31 May 2013
|
|
PACS: |
84.60.Jt
|
(Photoelectric conversion)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
78.67.De
|
(Quantum wells)
|
|
|
|
|
[1] Chiu C H, Lin D W, Li Z Y, Ling S C, Kuo H C, Lu T C, Wang S C, Liao W T, Tanikawa T, Honda Y, Yamaguchi M and Sawaki N 2011 Proc. SPIE 7939 p 79391 [2] Mo C, Fang W Q, Pu Y, Liu H C and Jiang F Y 2005 J. Cryst. Growth 285 312 [3] Liou B W 2009 Jpn. J. Appl. Phys. 48 072201 [4] Jampana B, Tianming X, Melton A, Jamil M, Opila R, Honsberg C and Ferguson I 2010 Photovoltaic Specialists Conference (PVSC) 2010 35th IEEE p 000457 [5] Brown G F, Ager J W, Walukiewicz W and Wu J 2009 Photovoltaic Specialists Conference (PVSC) 2009 34th IEEE p 001958 [6] Yamaguchi T, Morioka C, Mizuo K, Hori M, Araki T, Nanishi Y and Suzuki A 2003 Compound Semiconductors: Post-Conference Proceedings, 2003 International Symposium on p 214 [7] Liou B W 2011 Thin Solid Films 520 1084 [8] Deng Q W, Wang X L, Xiao H L, Wang C M, Yin H B, Chen H, Hou Q F, Lin D F, Li J M, Wang Z G and Hou X 2011 J. Phys. D: Appl. Phys. 44 265103 [9] Zhang X B, Wang X L, Xiao H L, Yang C B, Hou Q F, Yin H B, Chen H and Wang Z G 2011 Chin. Phys. B 20 028402 [10] Pan X, Wei M, Yang C B, Xiao H L, Wang C M and Wang X L 2011 J. Cryst. Growth 318 464 [11] Zhu D, McAleese C, H ?berlen M, Kappers M J, Hylton N, Dawson P, Radtke G, Couillard M, Botton G A, Sahonta S L and Humphreys C J 2012 Phys. Status Solidi A 209 13 [12] Lin K L, Chang E Y, Hsiao Y L, Huang W C, Li T K, Tweet D, Maa J S, Hsu S T, Lee C T 2007 Appl. Phys. Lett. 91 222111 [13] Wei M, Wang X L, Pan X, Xiao H L, Wang C M, Zhang M L and Wang Z G 2011 J. Phys.: Conf. Ser. 276 012094 [14] Wei M, Wang X L, Xiao H L, Wang C M, Pan X, Hou Q F and Wang Z G 2011 Chin. Phys. Lett. 28 048102 [15] Bairamov B H, Gürdal O, Botchkarev A and Morkoc H, Irmer g and Monecke J 1999 Phys. Rev. B 60 16741 [16] Harima H 2002 J. Phys.: Condens. Matter 14 967 [17] Wang L S, Zang K Y, Tripathy S and Chua S J 2004 Appl. Phys. Lett. 85 5881 [18] Dadgar A, Poschenrieder M, Reiher A, Bl?sing J, Christen J, Krtschil A, Finger T, Hempel T, Diez A and Krost A 2003 Appl. Phys. Lett. 82 28 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|