Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 058901    DOI: 10.1088/0256-307X/30/5/058901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Statistics of Leaders in Index-Driven Networks
ZHANG Yong1, JU Xian-Meng1,2, ZHANG Li-Jie3, XU Xin-Jian1,4**
1Department of Mathematics, Shanghai University, Shanghai 200444
2State key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876
3Department of Physics, Shanghai University, Shanghai 200444
4Institute of System Sciences, Shanghai University, Shanghai 200444
Cite this article:   
ZHANG Yong, JU Xian-Meng, ZHANG Li-Jie et al  2013 Chin. Phys. Lett. 30 058901
Download: PDF(511KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the statistical properties of leaders in growing networks with age. A leader of a network is defined as the node with the largest degree and the age of the node is trivially labeled by its index, i.e., the time it joins the network. As networks evolve with the addition of new nodes connecting to old ones with the possibility that is proportional to the index of the target, we investigate both the average number and index of leaders as well as the degree distribution of nodes. The average number of leaders first increases quickly with time and then saturates to a finite value and the average index of leaders increases algebraically with time. Both features result from the degree distribution with an exponential tail. Analytical calculations based on the rate equation are verified by numerical simulations.
Received: 14 December 2012      Published: 31 May 2013
PACS:  89.75.-k (Complex systems)  
  89.75.Hc (Networks and genealogical trees)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/058901       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/058901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yong
JU Xian-Meng
ZHANG Li-Jie
XU Xin-Jian
[1] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[2] Wu J S and Di Z R 2004 Prog. Phys. 24 18 (in Chinese)
[3] Dorogovtsev S N, Goltsev A V and Mendes J F F 2008 Rev. Mod. Phys. 80 1275
[4] Zhao M, Zhou T, Chen G R and Wang B H 2008 Prog. Phys. 28 22 (in Chinese)
[5] Watts D J and Strogatz S H 1998 Nature 393 440
[6] Amaral L A N, Scala A, Barthelemy M and Stanley H E 2000 Proc. Natl. Acad. Sci. USA 97 11149
[7] Barabási A L and Albert R 1999 Science 286 509
[8] Dorogovtsev S N and Mendes J F F 2000 Phys. Rev. E 62 1842
[9] Zhu H, Wang X R and Zhu J Y 2003 Phys. Rev. E 68 056121
[10] Herdağdelen A, Aygün E and Bingol H 2007 Europhys. Lett. 78 60007
[11] Klemm K and Eguíluz V M 2002 Phys. Rev. E 65 036123
[12] Tian L et al 2006 Phys. Rev. E 74 046103
[13] Xu X J and Zhou M C 2009 Phys. Rev. E 80 066105
[14] Xiong F et al 2011 Eur. Phys. J. B 84 115
[15] Wang X W et al 2013 Chin. Phys. B 22 018903
[16] Zhou J and Liu Z H 2008 Front. Phys. Chin. 3 331
[17] Zhang H F, Li K Z, Fu X C and Wang B H 2009 Chin. Phys. Lett. 26 068901
[18] Wang R, Chi L P and Cai X 2008 Chin. Phys. Lett. 25 1502
[19] Castellano C, Fortunato S and Loreto V 2009 Rev. Mod. Phys. 81 591
[20] Krapivsky P L and Redner S 2002 Phys. Rev. Lett. 89 258703
[21] Ben-Naim E and Krapivsky P L 2004 Europhys. Lett. 65 151
[22] Blondel V D et al 2008 Phys. Rev. E 77 036114
[23] Krapivsky P L and Redner S 2001 Phys. Rev. E 63 066123
Related articles from Frontiers Journals
[1] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks *[J]. Chin. Phys. Lett., 0, (): 058901
[2] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks[J]. Chin. Phys. Lett., 2020, 37(6): 058901
[3] Ze-Jun Xie, Lu-Man Zhang, Sheng-Feng Deng, Wei Li. A Dynamic Evolution Model of Airline Networks[J]. Chin. Phys. Lett., 2017, 34(5): 058901
[4] Di Yuan, Dong-Qiu Zhao, Yi Xiao, Ying-Xin Zhang. Travelling Wave in the Generalized Kuramoto Model with Inertia[J]. Chin. Phys. Lett., 2016, 33(05): 058901
[5] MENG Qing-Kuan, FENG Dong-Tai, GAO Xu-Tuan. Monte Carlo Renormalization Group Method to Study the First-Order Phase Transition in the Complex Ferromagnet[J]. Chin. Phys. Lett., 2015, 32(12): 058901
[6] FANG Pin-Jie, ZHANG Duan-Ming, HE Min-Hua, JIANG Xiao-Qin. Exact Solution for Clustering Coefficient of Random Apollonian Networks[J]. Chin. Phys. Lett., 2015, 32(08): 058901
[7] FENG Yue-E, LI Hai-Hong, YANG Jun-Zhong. Dynamics of the Kuramoto Model with Bimodal Frequency Distribution on Complex Networks[J]. Chin. Phys. Lett., 2014, 31(08): 058901
[8] ZHANG Wen, LI Yao-Sheng, DU Peng, XU Chen. Cooperation of a Dissatisfied Adaptive Prisoner's Dilemma in Spatial Structures[J]. Chin. Phys. Lett., 2013, 30(10): 058901
[9] SUN Mei, LI Dan-Dan, HAN Dun, JIA Qiang. Synchronization of Colored Networks via Discrete Control[J]. Chin. Phys. Lett., 2013, 30(9): 058901
[10] M. Mossa Al-sawalha. Adaptive Synchronization and Anti-Synchronization of a Chaotic Lorenz–Stenflo System with Fully Unknown Parameters[J]. Chin. Phys. Lett., 2013, 30(7): 058901
[11] ZANG Hong-Yan, MIN Le-Quan, ZHAO Geng, CHEN Guan-Rong. Generalized Chaos Synchronization of Bidirectional Arrays of Discrete Systems[J]. Chin. Phys. Lett., 2013, 30(4): 058901
[12] Wafaa Jawaada, M. S. M. Noorani, M. Mossa Al-sawalha. Anti-Synchronization of Chaotic Systems via Adaptive Sliding Mode Control[J]. Chin. Phys. Lett., 2012, 29(12): 058901
[13] HOU Lv-Lin, LAO Song-Yang, LIU Gang, BAI Liang. Controllability and Directionality in Complex Networks[J]. Chin. Phys. Lett., 2012, 29(10): 058901
[14] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 058901
[15] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 058901
Viewed
Full text


Abstract