Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 059401    DOI: 10.1088/0256-307X/30/5/059401
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Counter-Streaming Interaction between Fast Magnetosonic Wave and Radiation Belt Electrons
ZHU Hui, SU Zhen-Peng, ZHENG Hui-Nan**
CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026
Cite this article:   
ZHU Hui, SU Zhen-Peng, ZHENG Hui-Nan 2013 Chin. Phys. Lett. 30 059401
Download: PDF(800KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Fast magnetosonic (MS) waves have been suggested to be able to effectively accelerate radiation belt electrons. We present gyro-averaged test-particle simulations to investigate counter-streaming interaction between MS wave and radiation belt electrons. It is found that an MS wave can significantly scatter counter-streaming electrons through a non-resonant process. The corresponding energy diffusion coefficients for counter-streaming interaction are always comparable to those for co-streaming interaction, independent of wave normal angle. The pitch-angle and cross diffusion coefficients of counter-streaming interaction are much smaller than those of co-streaming interaction for small normal angles, while they become comparable for large normal angles. Moreover, the bounce-averaged diffusion coefficients exhibit quite different distribution from those for co-streaming or counter-streaming alone in the pitch-angle-energy space. These results suggest that the non-resonant effect associated with counter-streaming interaction is indispensable for the acceleration processes driven by an MS wave.
Received: 13 December 2012      Published: 31 May 2013
PACS:  94.20.wj (Wave/particle interactions)  
  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  94.30.Lr (Magnetic storms, substorms)  
  94.30.Hn (Energetic trapped particles)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/059401       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/059401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Hui
SU Zhen-Peng
ZHENG Hui-Nan
[1] Kennel C F and Engelmann F 1966 Phys. Fluids 9 2377
[2] Su Z P, Zheng H N and Wang S 2009 J. Geophys. Res. 114 A08202
[3] Throne R M 2010 Geophys. Res. Lett. 37 L22107
[4] Su Z P, Xiao F L, Zheng H N and Wang S 2011 Geophys. Res. Lett. 38 L06106
[5] Zong Q G et al 2007 Geophys. Res. Lett. 34 L12015
[6] Xiao F L, Su Z P, Zheng H N and Wang S 2010 J. Geophys. Res. 115 A10217
[7] Li W, Shprits Y Y and Thorne R M 2007 J. Geophys. Res. 112 A10220
[8] Su Z P, Zheng H N and Wang S 2010 J. Geophys. Res. 115 A05219
[9] Summers D R and Thorne R M 2003 J. Geophys. Res. 108(A4) 1143
[10] Su Z P, Xiao F L, Zheng H N and Wang S 2010 J. Geophys. Res. 115 A10249
[11] Su Z P, Xiao F L, Zheng H N and Wang S 2011 J. Geophys. Res. 116 A04205
[12] Zhu H et al 2012 J. Geophys. Res. 117 A12217
[13] Russel C T, Holzer R E and Smith E J 1970 J. Geophys. Res. 75 755
[14] Meredith N P, Horne R B and Anderson R R 2007 J. Geophys. Res. 112 A06213
[15] Horne R B et al 2007 Geophys. Res. Lett. 34 L17107
[16] Horne R B and Thorne R M 1998 Geophys. Res. Lett. 25 3011
[17] Summers D R, Thorne R M and Xiao F L 1998 J. Geophys. Res. 103(20) 487
[18] Horne R B et al 2005 J. Geophys. Res. 110 A03225
[19] Su Z P, Zheng H N and Wang S 2009 J. Geophys. Res. 114 A07201
[20] Su Z P, Zheng H N and Wang S 2010 J. Geophys. Res. 115 A06203
[21] Bortnik J and Thorne R M 2010 J. Geophys. Res. 115 A07213
[22] Zhu H, Su Z P and Zheng H N 2012 Chin. Phys. Lett. 29 109401
[23] Bell T M 1984 J. Geophys. Res. 89 905
[24] Denton R E, Goldstein J and Menietti J D 2002 Geophys. Res. Lett. 29(24) 2205
[25] Su Z P et al 2012 J. Geophys. Res. 117 A09222
Related articles from Frontiers Journals
[1] ZHU Hui, SU Zhen-Peng, ZHENG Hui-Nan. Normal-Angle Dependence of the Interaction between Radiation Belt Electrons and Fast Magnetosonic Waves[J]. Chin. Phys. Lett., 2012, 29(10): 059401
[2] XIAO Fu-Liang, **, HE Zhao-Guo ZHANG Sai, SU Zhen-Peng, CHEN Liang-Xu, . Diffusion Simulation of Outer Radiation Belt Electron Dynamics Induced by Superluminous L-O Mode Waves[J]. Chin. Phys. Lett., 2011, 28(3): 059401
[3] ZHANG Sai, XIAO Fu-Liang** . Chorus-Driven Outer Radiation Belt Electron Dynamics at Different L-Shells[J]. Chin. Phys. Lett., 2010, 27(12): 059401
[4] ZHOU Qing-Hua, HE Yi-Hua, HE Zhao-Guo, YANG Chang. Propagation Characteristics of Whistler-Mode Chorus during Geomagnetic Activities[J]. Chin. Phys. Lett., 2010, 27(5): 059401
[5] SU Zhen-Peng, ZHENG Hui-Nan. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves[J]. Chin. Phys. Lett., 2009, 26(12): 059401
[6] XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu, SU Zhen-Peng, ZHENG Hui-Nan. Evolution of Ring Current Protons Induced by Electromagnetic Ion Cyclotron Waves[J]. Chin. Phys. Lett., 2009, 26(11): 059401
[7] SU Zhen-Peng, ZHENG Hui-Nan, XIONG Ming. Dynamic Evolution of Outer Radiation Belt Electrons due to Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2009, 26(3): 059401
[8] ZHOU Qing-Hua, JIANG Bin, SHI Xiang-Hua, LI Jun-Qiu. Whistler-Mode Waves Growth by a Generalized Relativistic Kappa-Type Distribution[J]. Chin. Phys. Lett., 2009, 26(2): 059401
[9] SU Zhen-Peng, ZHENG Hui-Nan. Simulation of Resonant Interaction between Energetic Electrons and Whistler-Mode Chorus in the Outer Radiation Belt[J]. Chin. Phys. Lett., 2008, 25(12): 059401
[10] ZHENG Hui-Nan, SU Zhen-Peng, XIONG Ming. Pitch Angle Distribution Evolution of Energetic Electrons by Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2008, 25(9): 059401
Viewed
Full text


Abstract