CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
The Analysis of Main Dosimetric Glow Peaks in CaF2:Tm (TLD-300) |
Vural E. Kafadar**, Metin Bedir, A. Necmeddin Yazıcı, Tülin Günal |
Department of Engineering Physics, University of Gaziantep, Gaziantep 27310, Turkey
|
|
Cite this article: |
Vural E. Kafadar, Metin Bedir, A. Necmeddin Yazı et al 2013 Chin. Phys. Lett. 30 057802 |
|
|
Abstract The thermoluminescence properties of CaF2:Tm (TLD-300) are examined in detail after β-irradiation at room temperature. The glow curve of the sample shows two main dosimetric glow peaks: P3 (at ~150°C) and P5 (at ~250°C). The additive dose, variable heating rate, computer glow curve deconvolution, peak shape and three points methods are used to evaluate the trapping parameters, namely the order of kinetics (b), activation energy (E) and frequency factor (s) associated with the dosimetric thermoluminescent glow peaks (P3 and P5) of CaF2:Tm (TLD-300) after different dose levels with β-irradiation.
|
|
Received: 21 December 2012
Published: 31 May 2013
|
|
|
|
|
|
[1] Lucas A and Kapsar B 1977 Proc. 5th Conf. on Luminescence Dosimetry (Sao Paulo, Brazil) (Phys. Inst., Giessen) p 131 [2] Marczewska B, Bilski P, Budzanowski M, Olko P and Chernov V 2001 Radiat. Meas. 33 571 [3] Bos A J J and Dielhof J B 1991 Radiat. Prot. Dosim. 37 231 [4] Hayes W and Stoneham A M 1974 In: Crystals with the Fluorite Structure ed Hayes W (Oxford: Clarendon Press) p 185 [5] Jacob M, Meissner P and Rassow J 1990 Radiat. Prot. Dosim. 33 291 [6] McKeever S W S, Moscovitch M and Townsend P D 1995 Thermoluminescence Dosimetry Materials: Properties and Uses (Ashford Kent TN23 1YW) (England: Nuclear Technology Publishing) chap 3 p 71 [7] Lakshman A R and Tiwari S S 1993 Radiat. Prot. Dosim. 47 243 [8] Chen R and Horowitz Y S 1984 Thermoluminescent and Thermoluminescent Dosimetry (Boca Raton, FL: CRC Press) vol 1 [9] Chen R and McKeever S W S 1997 Theory of Thermoluminescence and Related Phenomena (Singapore: World Scientific) p 576 [10] Gartia R K, Singh S J and Mazumdar P S 1989 Phys. Status Solidi A 114 407 [11] Rasheedy M S 2005 Thermochim. Acta 429 143 [12] Bos A J J, Piters J M, Gomez Ros J M and Delgado A 1993 IRI-CIEMAT Report 131-93-005 IRI Delft (GLACANIN and Intercomparision of Glow Curve Analysis Computer Programs) [13] Kitis G, Gomez Ros J M and Tuyn J W N 1998 J. Phys. D: Appl. Phys. 31 2636 [14] Kitis G and Radionalyt J 2001 J. Radioanal. Nucl. Chem. 247 697 [15] Allen P and McKeever S W S 1990 Radiat. Prot. Dosim. 33 19 [16] Levy P W 1985 Radiat. Meas. 10 21 [17] Hornyak W F, Levy P W and Kierstead J A 1985 Radiat. Meas. 10 557 [18] Hsiang-En W, Shan-Wen L, Pao-Shan W and Pin-Chieh H 1995 Appl. Radiat. Isot. 46 869 [19] Drazic G, Miklavzic U and Mihelic M 1986 Radiat. Prot. Dosim. 17 343 [20] Yazıcı A N and Topaksu M 2003 J. Phys. D: Appl. Phys. 36 620 [21] Bos A J J and Dielhof J B 1991 Radiat. Prot. Dosim. 37 231 [22] Azorin J, Furetta C and Gutie'rrez A 1989 J. Phys. D: Appl. Phys. 22 458 [23] Bacci C, Bernardini P, Di Domenico A, Furetta C and Rispoli B 1990 Nucl. Instrum. Methods Phys. Res. Sect. A 286 295 [24] Jafarizadeh M, Sohrabi M and Nazeri F 1999 Radiat. Prot. Dosim. 84 119 [25] Chen R, Leung P L and Stokes M J 2000 Radiat. Meas. 32 505 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|