CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Optical Properties of CdS/PVA Nanocomposite Films Synthesized using the Gamma-Irradiation-Induced Method |
Alireza Kharazmi1*, Elias Saion1, Nastaran Faraji1, Nayereh Soltani1, Arash Dehzangi2 |
1Physics Department, Faculty of Science, University Putra Malaysia, Serdang 43400, Malaysia 2Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
|
|
Cite this article: |
Alireza Kharazmi, Elias Saion, Nastaran Faraji et al 2013 Chin. Phys. Lett. 30 057803 |
|
|
Abstract Monodispersed spherical CdS nanoparticles embedded into polyvinyl alcohol (PVA) films are synthesized by using an in-situ gamma-irradiation-induced method. The formation mechanism of CdS nanoparticles capped by two united cells of PVA is purposed by means of surrounding the CdS nanoparticles with OH bonds of the PVA chain. CdS nanoparticles are found to possess an unusual orthorhombic structure in monoclinic crystalline PVA. The polymer matrix affords protection from agglomeration and controls the particle size. It is found that the distribution of the prepared nanoparticles increases and a narrower size distribution is observed when the gamma radiation is varied from 10 to 50 kGy. While the average size of the nanoparticles is found to be less affected by the variation of the gamma radiation doses. The size range of the synthesized nanoparticles is 14±1 nm. The optical absorption spectra of synthesized CdS nanoparticles in a polymer matrix reveal the blue shift in the band gap energy with respect to CdS bulk materials owing to quantum confinement effect. The photoluminescence study of nanocomposite films shows the green emission arising from the crystalline defects.
|
|
Received: 15 November 2012
Published: 31 May 2013
|
|
PACS: |
78.67.Sc
|
(Nanoaggregates; nanocomposites)
|
|
81.07.Pr
|
(Organic-inorganic hybrid nanostructures)
|
|
78.55.Et
|
(II-VI semiconductors)
|
|
|
|
|
[1] Loukanov A R, Dushkin C D, Papazova K I, Kirov A V, Abrashev M V and Adachi E 2004 Colloids Surf. A 245 9 [2] Molaei M, Iranizad E S, Marandi M, Taghavinia N and Amrollahi R 2011 Appl. Surf. Sci. 257 9796 [3] Sadhu S, Saha Chowdhury P and Patra A 2008 J. Lumin. 128 1235 [4] Kaneko M and Okura I 2002 Photocatalysis: Sci. Technol. (Kodansha: Springer) Chap p 77 [5] Yu G, Li X, Cai X, Cui W, Zhou S and Weng J 2008 Acta Mater. 56 5775 [6] Arora S and Sundar Manoharan S 2007 J. Phys. Chem. Solids 68 1897 [7] Liu X, Jiang Y, Lan X, Zhang Y, Li S, Li J, Han T, Wang B and Zhong H 2011 Mater. Chem. Phys. 130 909 [8] Pal K, Maiti U N, Majumder T P and Debnath S C 2011 Appl. Surf. Sci. 258 163 [9] Unni C, Philip D and Gopchandran K G 2008 Spectrochim. Acta Part A 71 1402 [10] Khanna P K, Gokhale R R, Subbarao V V V S, Singh N, Jun K W and Das B K 2005 Mater. Chem. Phys. 94 454 [11] Meng X Q, Zhao D X, Zhang J Y, Shen D Z, Lu Y M, Fan X W and Wang X H 2007 Mater. Lett. 61 3535 [12] Trindade T, O'Brien P and Pickett N L 2001 Chem. Mater. 13 3843 [13] Wang H, Chen Z, Fang P and Wang S 2007 Mater. Chem. Phys. 106 443 [14] Elashmawi I S, Hakeem N A and Selim M S 2009 Mater. Chem. Phys. 115 132 [15] Salavati-Niasari M, Loghman-Estarki M R and Davar F 2009 Inorg. Chim. Acta 362 3677 [16] Di Luccio T, Laera A M, Tapfer L, Kempter S, Kraus R and Nickel B 2006 J. Phys. Chem. B 110 12603 [17] Tamborra M, Striccoli M, Comparelli R, Curri M L, Petrella A and Agostiano A 2004 Nanotechnology 15 S240 [18] Raut B T, Chougule M A, Sen S, Pawar R C, Lee C S and Patil V B 2012 Ceram. Int. 38 3999 [19] Yu S H, Yoshimura M, Calderon Moreno J M, Fujiwara T, Fujino T and Teranishi R 2001 Langmuir 17 1700 [20] Qian X F, Yin J, Guo X X, Yang Y F, Zhu Z K and Lu J 2000 J. Mater. Sci. Lett. 19 2235 [21] Soltani N, Dehzangi A, Saion E, Majlis B Y, Zare M R, Kharazmi A and Navasery M 2013 Chalcogenide Lett. 10 27 [22] Ni Y, Ge X and Zhang Z 2006 Mater. Sci. Eng. B 130 61 [23] Chatterjee A, Priyam A, Das S K and Saha A 2006 J. Colloid Interface Sci. 294 334 [24] Wu D, Ge X, Huang Y, Zhang Z and Ye Q 2003 Mater. Lett. 57 3549 [25] Yin Y, Xu X and Zhang Z 1998 Chem. Commun. 16 1641 [26] Bhat N V, Nate M M, Kurup M B, Bambole V A and Sabharwal S 2005 Nucl. Instrum. Methods Phys. Res. Sect. B 237 585 [27] Bunn C W 1948 Nature 161 929 [28] Shevchenko E V, Talapin D V, Schnablegger H, Kornowski A, Festin ? Svedlindh P, Haase M and Weller H 2003 J. Am. Chem. Soc. 125 9090 [29] Soltani N, Saion E, Erfani M, Rezaee K, Bahmanrokh G, Drummen G P C, Bahrami A and Hussein M Z 2012 Int. J. Mol. Sci. 13 12412 [30] Singh V and Chauhan P 2009 J. Phys. Chem. Solids 70 1074 [31] Murugan A V, Kale B B, Kulkarni A V, Kunde L B and Saaminathan V 2005 J. Mater. Sci.: Mater. Electron. 16 295 [32] Kayanuma Y 1988 Phys. Rev. B 38 9797 [33] Ekimov A, Efros A L, Ivanov M, Onushchenko A and Shumilov S 1989 Solid State Commun. 69 565 [34] Chaure S, Chaure N B, Pandey R K and Ray A K 2007 IET Circuits Devices Syst. 1 215 [35] Lozada-Morales R, Zelaya-Angel O and Torres-Delgado G 2001 Appl. Surf. Sci. 175 562 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|