Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 057101    DOI: 10.1088/0256-307X/30/5/057101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Valence Band Offset of an Al0.17Ga0.83N/GaN Heterojunction Determined by X-Ray Photoelectron Spectroscopy
WAN Xiao-Jia1, WANG Xiao-Liang1,2,3**, XIAO Hong-Ling1, WANG Cui-Mei1, FENG Chun1, DENG Qing-Wen1, QU Shen-Qi1, ZHANG Jing-Wen3, HOU Xun3, CAI Shu-Jun4, FENG Zhi-Hong4
1Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2ISCAS-XJTU Joint Laboratory of Functional Materials and Devices for Informatics, Beijing 100083
3School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049
4National Key Lab of ASIC, Shijiazhuang 050051
Cite this article:   
WAN Xiao-Jia, WANG Xiao-Liang, XIAO Hong-Ling et al  2013 Chin. Phys. Lett. 30 057101
Download: PDF(722KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The valence band offset (VBO) of an Al0.17Ga0.83N/GaN heterojunction is determined to be 0.13±0.07 eV by x-ray photoelectron spectroscopy. From the obtained VBO value, the conduction band offset (CBO) of ~0.22 eV is obtained. The results indicate that the Al0.17Ga0.83N/GaN heterojunction exhibits a type-I band alignment.
Received: 14 January 2013      Published: 31 May 2013
PACS:  71.55.Eq (III-V semiconductors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/057101       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/057101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WAN Xiao-Jia
WANG Xiao-Liang
XIAO Hong-Ling
WANG Cui-Mei
FENG Chun
DENG Qing-Wen
QU Shen-Qi
ZHANG Jing-Wen
HOU Xun
CAI Shu-Jun
FENG Zhi-Hong
[1] Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
[2] Xu X Q et al 2010 J. Appl. Phys. 107 104510
[3] Kraut E et al 1980 Phys. Rev. Lett. 44 1620
[4] Waldrop J et al 1985 J. Vac. Sci. Technol. A 3 835
[5] Martin G et al 1994 Appl. Phys. Lett. 65 610
[6] Martin G et al 1996 Appl. Phys. Lett. 68 2541
[7] Wu C L, Shen C H and Gwo S 2006 Appl. Phys. Lett. 88 032105
[8] King P et al 2008 Phys. Rev. B 78 033308
[9] Zhang R Q et al 2008 Appl. Phys. Lett. 93 122111
[10] Yang A L et al 2009 Appl. Phys. Lett. 94 052101
[11] Akazawa M et al 2010 Appl. Phys. Lett. 96 132104
[12] Zheng G L et al 2010 Appl. Surf. Sci. 256 7327
[13] Akazawa M et al 2011 J. Appl. Phys. 109 013703
[14] Kumar M et al 2012 Phys. Status Solidi B 249 58
[15] Wei S H and Zunger A 1996 Appl. Phys. Lett. 69 2719
[16] Wu C L et al 2008 Appl. Phys. Lett. 92 162106
[17] Ambacher O et al 1999 J. Appl. Phys. 85 3222
[18] Bernardini F and Fiorentini V 2001 Phys. Rev. B 64 85207
Related articles from Frontiers Journals
[1] Meihua Liu , Zhangwei Huang , Kuanchang Chang , Xinnan Lin , Lei Li , and Yufeng Jin. Performance Enhancement of AlGaN/GaN MIS-HEMTs Realized via Supercritical Nitridation Technology[J]. Chin. Phys. Lett., 2020, 37(9): 057101
[2] Ting-Ting Wang, Xiao Wang, Xiao-Bo Li, Jin-Cheng Zhang, Jin-Ping Ao. Temperature-Dependent Characteristics of GaN Schottky Barrier Diodes with TiN and Ni Anodes[J]. Chin. Phys. Lett., 2019, 36(5): 057101
[3] Jin Xu, Wei Zhang, Meng Peng, Jiang-Nan Dai, Chang-Qing Chen. Enhanced Luminescence of InGaN-Based 395nm Flip-Chip Near-Ultraviolet Light-Emitting Diodes with Al as N-Electrode[J]. Chin. Phys. Lett., 2017, 34(7): 057101
[4] Sheng-Kai Wang, Lei Ma, Hu-Dong Chang, Bing Sun, Yu-Yu Su, Le Zhong, Hai-Ou Li, Zhi Jin, Xin-Yu Liu, Hong-Gang Liu. Positive Bias Temperature Instability Degradation of Buried InGaAs Channel nMOSFETs with InGaP Barrier Layer and Al$_{2}$O$_{3}$ Dielectric[J]. Chin. Phys. Lett., 2017, 34(5): 057101
[5] De-Gang Zhao, De-Sheng Jiang, Ling-Cong Le, Jing Yang, Ping Chen, Zong-Shun Liu, Jian-Jun Zhu, Li-Qun Zhang. Performance Improvement of GaN-Based Violet Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(1): 057101
[6] Ying Zhao, Sheng-Rui Xu, Zhi-Yu Lin, Jin-Cheng Zhang, Teng Jiang, Meng-Di Fu, Jia-Duo Zhu, Qin Lu, Yue Hao. C-Implanted N-Polar GaN Films Grown by Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(12): 057101
[7] Sheng-Rui Xu, Ying Zhao, Teng Jiang, Jin-Cheng Zhang, Pei-Xian Li, Yue Hao. Improved Semipolar (11$\bar{2}$2) GaN Quality Grown on $m$-Plane Sapphire Substrates by Metal Organic Chemical Vapor Deposition Using Self-Organized SiN$_{x}$ Interlayer[J]. Chin. Phys. Lett., 2016, 33(06): 057101
[8] ZHOU Shu-Xing, QI Ming, AI Li-Kun, XU An-Huai, WANG Li-Dan, DING Peng, JIN Zhi. Effects of Si δ-Doping Condition and Growth Interruption on Electrical Properties of InP-Based High Electron Mobility Transistor Structures[J]. Chin. Phys. Lett., 2015, 32(09): 057101
[9] JIANG Ren-Yuan, XU Sheng-Rui, ZHANG Jin-Cheng, JIANG Teng, JIANG Hai-Qing, WANG Zhi-Zhe, FAN Yong-Xiang, HAO Yue. Morphological and Microstructural Evolution and Related Impurity Incorporation in Non-Polar a-Plane GaN Grown on r-Sapphire Substrates[J]. Chin. Phys. Lett., 2015, 32(09): 057101
[10] FENG Zhi-Hong, WANG Xian-Bin, WANG Li, LV Yuan-Jie, FANG Yu-Long, DUN Shao-Bo, ZHAO Zheng-Ping. Ti/Al Based Ohmic Contact to As-Grown N-Polar GaN[J]. Chin. Phys. Lett., 2015, 32(08): 057101
[11] NIU Bin, WANG Yuan, CHENG Wei, XIE Zi-Li, LU Hai-Yan, CHANG Long, XIE Jun-Ling. Common Base Four-Finger InGaAs/InP Double Heterojunction Bipolar Transistor with Maximum Oscillation Frequency 535 GHz[J]. Chin. Phys. Lett., 2015, 32(07): 057101
[12] KONG Xiang-Ting, ZHOU Xu-Liang, LI Shi-Yan, QIAO Li-Jun, LIU Hong-Gang, WANG Wei, PAN Jiao-Qing. High-Performance In0.23Ga0.77As Channel MOSFETs with High Current Ratio Ion/Ioff Grown on Semi-insulating GaAs Substrates by MOCVD[J]. Chin. Phys. Lett., 2015, 32(03): 057101
[13] ZHOU Xu-Liang, PAN Jiao-Qing, YU Hong-Yan, LI Shi-Yan, WANG Bao-Jun, BIAN Jing, WANG Wei. Growth of High-Quality GaAs on Ge by Controlling the Thickness and Growth Temperature of Buffer Layer[J]. Chin. Phys. Lett., 2014, 31(12): 057101
[14] ZHANG Shi-Ying, XIU Xiang-Qian, HUA Xue-Mei, XIE Zi-Li, LIU Bin, CHEN Peng, HAN Ping, LU Hai, ZHANG Rong, ZHENG You-Dou. Synthesis and Growth Mechanism: A Novel Fishing Rod-Shaped GaN Nanorods[J]. Chin. Phys. Lett., 2014, 31(05): 057101
[15] ZHANG Jian-Li, LIU Jun-Lin, PU Yong, FANG Wen-Qing, ZHANG Meng, JIANG Feng-Yi. Effects of Carrier Gas on Carbon Incorporation in GaN[J]. Chin. Phys. Lett., 2014, 31(03): 057101
Viewed
Full text


Abstract