Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 056802    DOI: 10.1088/0256-307X/30/5/056802
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Visualization of a Maze-Like Reconstruction of Graphene on a Copper Surface at the Atomic Scale
XIE Nan1,2, GONG Hui-Qi2, ZHOU Zhi2, GUO Xiao-Dong2, YAN Shi-Chao2, SUN Qian1, XING Sirui3, WU Wei3, PEI Shin-shem3, BAO Jiming3, SHAN Xin-Yan2, GUO Yang2**, LU Xing-Hua2**
1The MOE Key Laboratory of Weak-Light Nonlinear Photonics, Tianjin Key Laboratory of Photonics Materials and Technology for Information Science, School of Physics, Nankai University, Tianjin 300071
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
Cite this article:   
XIE Nan, GONG Hui-Qi, ZHOU Zhi et al  2013 Chin. Phys. Lett. 30 056802
Download: PDF(779KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Interaction with the substrate plays an essential role in determining the structure and electronic property of graphene supported by a surface. We observe a maze-like reconstruction pattern in graphene on flat copper foil. With functionalized scanning tunneling microscope tips, a triangular three-for-six structure of graphene and a mixed (2√2 ×√2 )R45° reconstruction of a Cu(100) surface are separately visualized at the atomic scale. Substrate-induced changes in the structure and electronic property are further illustrated by micro-Raman spectroscopy and scanning tunneling spectroscopy. This finding suggests a new method to effectively induce partial sp3 hybridization in a single-layer graphene and therefore to tune its electronic property through interaction with the substrate.

Received: 28 January 2013      Published: 31 May 2013
PACS:  68.65.Pq (Graphene films)  
  68.47.De (Metallic surfaces)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/056802       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/056802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIE Nan
GONG Hui-Qi
ZHOU Zhi
GUO Xiao-Dong
YAN Shi-Chao
SUN Qian
XING Sirui
WU Wei
PEI Shin-shem
BAO Jiming
SHAN Xin-Yan
GUO Yang
LU Xing-Hua

[1] Novoselov K S et al 2004 Science 306 666
[2] Novoselov K S et al 2005 Nature 438 197
[3] Zhang Y et al 2005 Nature 438 201
[4] Berger C et al 2006 Science 312 1191
[5] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[6] Kim K S et al 2009 Nature 457 706
[7] Li X et al 2009 Science 324 1312
[8] Li X S et al 2009 Nano Lett. 9 4359
[9] Novoselov K S et al 2012 Nature 490 192
[10] Wallace P R 1947 Phys. Rev. 71 622
[11] Castro Neto A H et al 2009 Rev. Mod. Phys. 81 109
[12] Zhang Y et al 2008 Nat. Phys. 4 627
[13] Balog R et al 2010 Nat. Mater. 9 315
[14] Zhao L et al 2011 Science 333 999
[15] Elias D C et al 2009 Science 323 610
[16] Ryu S et al 2008 Nano Lett. 8 4597
[17] Ishigami M et al 2007 Nano Lett. 7 1643
[18] Xu K, Cao P and Heath J R 2009 Nano Lett. 9 4446
[19] Zhang Y et al 2011 ACS Nano 5 4014
[20] Zhou S Y et al 2007 Nat. Mater. 6 770
[21] Rotenberg E et al 2008 Nat. Mater. 7 258
[22] Zhou S Y et al 2008 Nat. Mater. 7 259
[23] Stolyarova E et al 2007 Proc. Natl. Acad. Sci. USA 104 9209
[24] Wu W et al 2010 Sens. Actuators B 10 1016
[25] Wu W et al 2011 Adv. Mater. 23 4898
[26] Yu Q et al 2011 Nat. Mater. 10 443
[27] Wang Y et al 2013 Nat. Commun. (submitted)
[28] Deng Z T et al 2006 Phys. Rev. Lett. 96 156102
[29] Hamers R J, Tromp R M and Demuth J E 1986 Phys. Rev. Lett. 56 1972
[30] Ruan L et al 1993 Phys. Rev. Lett. 70 4079
[31] Wehling T O, Katsnelson M I and Lichtenstein A I 2009 Phys. Rev. B 80 085428
[32] Lherbier A S et al 2011 Phys. Rev. Lett. 106 046803
[33] Ferrari A C et al 2006 Phys. Rev. Lett. 97 187401
[34] Cho J et al 2011 ACS Nano 5 3607
[35] Zeng H C, McFarlane R A and Mitchell K A R 1989 Surf. Sci. 208 L7
[36] Woll Ch et al 1990 Phys. Rev. B 42 11926
[37] Tian J et al 2012 Nano Lett. 12 3893

Related articles from Frontiers Journals
[1] Jie Jiang, Long Yan, and Haiping Fang. Effect of Oxide Content of Graphene Oxide Membrane on Remarkable Adsorption for Calcium Ions[J]. Chin. Phys. Lett., 2021, 38(10): 056802
[2] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 056802
[3] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 056802
[4] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 056802
[5] Gang Li, Hong-Wei Cheng, Li-Fang Guo, Kai-Ying Wang, Zai-Jun Cheng. An Efficiency Enhanced Graphene/n-Si Schottky Junction for Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 056802
[6] S. Fahad, M. Ali, S. Ahmed, S. Khan, S. Alam, S. Akhtar. Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix[J]. Chin. Phys. Lett., 2017, 34(10): 056802
[7] Ze-Zhao He, Ke-Wu Yang, Cui Yu, Qing-Bin Liu, Jing-Jing Wang, Xu-Bo Song, Ting-Ting Han, Zhi-Hong Feng, Shu-Jun Cai. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 056802
[8] XIANG Lang, WU Jian, MA Shuang-Ying, WANG Fang, ZHANG Kai-Wang. Nanoindentation Models of Monolayer Graphene and Graphyne under Point Load Pattern Studied by Molecular Dynamics[J]. Chin. Phys. Lett., 2015, 32(09): 056802
[9] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 056802
[10] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 056802
[11] WANG Wen-Rong, LIANG Chen, LI Tie, YANG Heng, LU Na, WANG Yue-Lin. Graphene Domains Synthesized on Electroplated Copper by Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(2): 056802
[12] HUANG Qing-Song, GUO Li-Wei, WANG Wen-Jun, WANG Gang, WANG Wan-Yan, JIA Yu-Ping, LIN Jing -Jing, LI Kang, CHEN Xiao-Long. Raman Spectrum of Epitaxial Graphene on SiC (0001) by Pulsed Electron Irradiation[J]. Chin. Phys. Lett., 2010, 27(4): 056802
Viewed
Full text


Abstract