FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Improvement of the Focusing Resolution of Photonic Crystal Negative Refraction Imaging with a Hollow Component Structure |
CHEN Shou-Xiang1, YANG Xiu-Lun1**, MENG Xiang-Feng1, DONG Guo-Yan2, WANG Yu-Rong1, WANG Lin-Hui1, HUANG Zhe1 |
1Department of Optics, Shandong University, Jinan 250100 2Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
|
|
Cite this article: |
CHEN Shou-Xiang, YANG Xiu-Lun, MENG Xiang-Feng et al 2013 Chin. Phys. Lett. 30 054206 |
|
|
Abstract The negative refraction and imaging effects in photonic crystals can be used to solve diffraction limit problem in near-field optics. Improving transmission efficiency and image resolution is a critical work for negative refraction imaging. We theoretically investigate the band structures, equi-frequency surfaces, electromagnetic wave propagation, and the image intensity distributions in a two-dimensional hexagonal photonic crystal consisting of hollow components. It is found that, in contrast to a hexagonal photonic crystal consisting of solid dielectric cylinders of the same radius, photonic crystals with hollow components can be used to optimize the all-angle negative refraction. Numerical simulations show that the transmission efficiency and resolution of image can be enhanced by changing the radii of the hollow air rods.
|
|
Received: 12 November 2012
Published: 31 May 2013
|
|
PACS: |
42.30.Wb
|
(Image reconstruction; tomography)
|
|
42.68.Sq
|
(Image transmission and formation)
|
|
42.70.Qs
|
(Photonic bandgap materials)
|
|
74.62.Dh
|
(Effects of crystal defects, doping and substitution)
|
|
|
|
|
[1] Veselago V G 1968 Sov. Phys. Usp. 10 509 [2] Pendry J B 2000 Phys. Rev. Lett. 85 3966 [3] Luo C Y, Johnson S G, Joannopoulos J D and Pendry J B 2002 Phys. Rev. B 65 201104 [4] Dong G Y, Yang X L and Cai L Z 2010 Opt. Express 18 16302 [5] Asatsuma T and Bata T 2008 Opt. Express 16 8711 [6] Foteinopoulou S and Soukoulis C M 2003 Phys. Rev. B 67 235107 [7] Wang Y Y and Chen L W 2006 Opt. Express 14 10580 [8] Zengerle R and Hoang P C 2007 J. Opt. Soc. Am. B 24 997 [9] Sun G, Jugessur A S and Kirk A G 2006 Opt. Express 14 6755 [10] Berrier A, Mulot M, Swillo M, Qiu M, Thylen L, Talneau A and Anand S 2004 Phys. Rev. Lett. 93 073902 [11] Xiao S S, Qiu M, Ruan Z C and He S L 2004 Appl. Phys. Lett. 85 4269 [12] Qiu C Y, Zhang X D and Liu Z Y 2005 Phys. Rev. B 71 054302 [13] Feng S, Li Z Y, Feng Z F, Cheng B Y and Zhang D Z 2005 Phys. Rev. B 72 075101 [14] Wang X, Ren Z F and Kempa K 2004 Opt. Express 12 2919 [15] Dong G Y, Yang X L and Cai L Z 2011 Chin. Phys. Lett. 28 014210 [16] Shi P, Huang K and Li Y P 2012 Opt. Lett. 37 359 [17] Wang H W, Wu M L and Chen L W 2010 Physica B 405 4157 [18] Tang Z X, Zhang H, Ye Y X, Zhao C J, Peng R W, Wen S C and Fan D Y 2007 Solid State Commun. 141 183 [19] Huang Y J, Lu W T and Sridhar S 2007 Phys. Rev. A 76 013824 [20] Asatsuma T and Baba T 2008 Opt. Express 16 8711 [21] Casse B D F, Lu W T, Banyal R K, Huang Y J, Selvarasah S, Dokmeci M R, Perry C H and Sridhar S 2009 Opt. Lett. 34 1994 [22] Feng S, Feng Z F, Ren K, Ren C, Li Z Y, Cheng B Y and Zhang D Z 2006 Chin. Phys. B 15 0552 [23] Gajic R et al 2006 Phys. Rev. B 73 165310 [24] Wang X et al 2004 Opt. Express 12 2919 [25] Joannopoulos J D et al 1995 Photonic Crystals: Molding the Flow of Light (Princeton: Princeton University Press) [26] Guo S and Albin S 2003 Opt. Express 11 167 [27] Jiang L Y, Wu H and Li X Y 2012 Opt. Commun. 285 2462 [28] Taflove A and Hagness S C 2005 Comput. ElectroDyn.: Finite-Difference Time-Domain Method 3rd ed. (Artech House, Norwood, MA) [29] B érenger J P 1994 J. Comput. Phys. 114 185 [30] Li J et al 2007 J. Appl. Phys. 102 073538 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|