FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Efficient 1.8 μm Emission of a Novel Tm3+ Doped Germanate-Tellurite Glass |
PENG Ya-Pei1,2, GUO Yan-Yan1,2, ZHANG Jun-Jie1** |
1Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 2University of Chinese Academy of Sciences, Beijing 100039
|
|
Cite this article: |
PENG Ya-Pei, GUO Yan-Yan, ZHANG Jun-Jie 2013 Chin. Phys. Lett. 30 054207 |
|
|
Abstract A new type of germanate-tellurite glass with doped Tm3+ ions is synthesized and its 1.8 μm emission properties have been studied for its application as a laser material. The Judd–Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm3+ ions are calculated and analyzed. Germanate-tellurite glass with 1.0 mol% Tm2O3 possesses the highest spontaneous transition probability (423.4 s?1) and the largest calculated emission cross section (6.91×10?21 cm2) at 1.8 μm corresponding to the 3F4→3H6 transition. The good 1.8 μm emission performance suggests that this glass may become an attractive host for developing solid state lasers operating in the mid-infrared.
|
|
Received: 28 January 2013
Published: 31 May 2013
|
|
PACS: |
42.70.Ce
|
(Glasses, quartz)
|
|
42.70.Km
|
(Infrared transmitting materials)
|
|
81.05.Kf
|
(Glasses (including metallic glasses))
|
|
|
|
|
[1] Cornacchia F, Toncelli A and Tonelli M 2009 Prog. Quantum Electron. 33 61 [2] Jackson S D and Mossman S 2003 Appl. Phys. B 77 489 [3] Tsang Y H, Coleman D J and King T A 2004 Opt. Commun. 231 357 [4] de Sousa D F, Zonetti L F C, Bell M J V, Sampaio J A, Nunes L A O, Baesso M L, Bento A C and Miranda L C M 1999 Appl. Phys. Lett. 74 908 [5] Barnes N P, Walsh B M, Reichle D J and DeYoung R J 2009 Opt. Mater. 31 1061 [6] Zhou R, Ju Y, Zhang Y and Wang Y 2011 Chin. Opt. Lett. 09 071401 [7] Tang Y, Yang Y, Cheng X and Xu J 2008 Chin. Opt. Lett. 06 44 [8] Martino D D, Statos L F, Marques A C and Alweida R M 2001 J. Non-Cryst. Solids 293-295 394 [9] Huang L, Shen S and Jha A 2004 J. Non-Cryst. Solids 345-346 349 [10] Bayya S S, Chin G D, Sanghera J S and Aggarwal I D 2006 Opt. Express 14 11687 [11] Ofelt G S 1962 J. Chem. Phys. 37 511 [12] Judd B 1962 Phys. Rev. 127 750 [13] Tian Y, Xu R, Zhang L, Hu L and Zhang J 2010 J. Appl. Phys. 108 083504 [14] Peng B and Izumitani T 1995 Opt. Mater. 4 797 [15] Wang X, Hu L, Li K, Tian Y and Fan S 2012 Chin. Opt. Lett. 10 101601 [16] Shi D M, Zhang Q Y, Yang G F, Liu Y H and Jiang Z H 2006 Chin. Phys. Lett. 23 478 [17] Li M, Bai G, Guo Y, Hu L and Zhang J 2012 J. Lumin. 132 1830 [18] Gomes L, Lousteau J, Milanese D, Scarpignato G C and Jackson S D 2012 J. Appl. Phys. 111 063105 [19] Zhang Q Y, Wang Y C, Xia H P and Zhang J L 2010 Acta Phys. Sin. 59 5808 [20] Balda R, Lacha L M, Fernández J, Arriandiaga M A, Fernández-Navarro J M and Munoz-Martin D 2008 Opt. Express 16 11836 [21] McCumber D 1964 Phys. Rev. 134 A299 [22] Walsh B, Barnes N, Reichle D and Jiang S 2006 J. Non-Cryst. Solids 352 5344 [23] Fan H, Gao G, Wang G, Hu J and Hu L 2010 Opt. Mater. 32 627 [24] Zou X and Toratani H 1996 J. Non-Cryst. Solids 195 113 [25] Zhang Q, Chen G, Zhang G, Qiu J and Chen D 2009 J. Appl. Phys. 106 113102 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|