Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 050304    DOI: 10.1088/0256-307X/30/5/050304
GENERAL |
Preparation of N-Qubit GHZ State with a Hybrid Quantum System Based on Nitrogen-Vacancy Centers
ZHAO Yu-Jing1**, FANG Xi-Ming1**, ZHOU Fang2, SONG Ke-Hui3
1Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081
2College of Zhangjiajie, Jishou University, Zhangjiajie 427000
3Department of Physics and Information Engineering, Huaihua University, Huaihua 418008
Cite this article:   
ZHAO Yu-Jing, FANG Xi-Ming, ZHOU Fang et al  2013 Chin. Phys. Lett. 30 050304
Download: PDF(509KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a novel scheme for generating N-qubit GHZ entangled state with a hybrid quantum system, which consists of N nitrogen-vacancy centers, N transmission line resonators, a current-biased Josephson junction superconducting qubit, and three kinds of interaction Hamiltonians. The proposal requires no adjustment of the qubit level spacings during the entire operation. Moreover, it is shown that the operation time is independent of the number of qubits. The present proposal is quite useful, and is a promising step to realize the large-sized quantum networks for quantum information processing and quantum computation.
Received: 27 November 2012      Published: 31 May 2013
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Dv (Quantum state engineering and measurements)  
  76.30.Mi (Color centers and other defects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/050304       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/050304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Yu-Jing
FANG Xi-Ming
ZHOU Fang
SONG Ke-Hui
[1] You J Q snd Nori F 2005 Phys. Today 58 42
[2] Clarke J and Wilhelm F K 2008 Nature 453 1031
[3] Buluta I and Nori F 2009 Science 326 108
[4] Ladd T D et al 2010 Nature 464 45
[5] Davies G, Lawson S C, Collins A T, Mainwood A and Sharp S J 1992 Phys. Rev. B 46 13157
[6] Manson N B, Harrison J P and Sellars M J 2006 Phys. Rev. B 74 104303
[7] Jelezko F, Gaebel T, Popa I, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 92 076401
[8] Shi F et al 2010 Phys. Rev. Lett. 105 040504
[9] Balasubramanian G et al 2009 Nat. Mater. 8 383
[10] Yu Y et al 2002 Science 296 889
[11] Martinis J M, Nam S, Aumentado J and Urbina C 2002 Phys. Rev. Lett. 89 117901
[12] Blais A, Maassen van den Brink A and Zagoskin A M 2003 Phys. Rev. Lett. 90 127901
[13] Hu Y, Xiao Y F, Zhou Z W and Guo G C 2007 Phys. Rev. A 75 012314
[14] Wallquist M, Hammerer K, Rabl P, Lukin M and Zoller P 2009 Phys. Scr. T137 014001
[15] Yang W L, Yin Z Q, Hu Y, Feng M and Du J F 2011 Phys. Rev. A 84 010301(R)
[16] Marcos D, Wubs M, Taylor J M, Aguado R, Lukin M D and S ?rensen A S 2010 Phys. Rev. Lett. 105 210501
[17] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[18] Zheng S B 2003 Phys. Rev. A 68 035801
[19] Neumann P et al 2008 Science 320 1326
[20] Yang C P 2011 Phys. Rev. A 83 062302
[21] Yang C P and Han S 2011 arXiv:1106.3237v2
[22] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[23] Twamley J and Barrett S D 2010 Phys. Rev. B 81 241202(R)
[24] Xu Z Y, Hu Y M, Yang W L, Feng M and Du J F 2009 Phys. Rev. A 80 022335
[25] Togan E et al 2010 Nature 466 730
[26] Yang W L, Yin Z Q, Xu Z Y, Feng M and Oh C H 2011 Phys. Rev. A 84 043849
[27] Zheng S B and Guo G C 1996 Phys. Lett. A 223 332
[28] DiCarlo L et al 2000 Nature 467 574
[29] Gambetta J M, Houck A A and Blais A 2011 Phys. Rev. Lett. 106 030502
[30] Frunzio L, Wallraff A, Schuster D I, Majer J and Schoelkopf R J 2005 IEEE Trans. Appl. Supercond. 15 860
[31] Gao M et al 2012 Phys. Lett. A 376 595
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 050304
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 050304
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 050304
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 050304
[5] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 050304
[6] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 050304
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 050304
[8] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 050304
[9] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 050304
[10] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 050304
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 050304
[12] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 050304
[13] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 050304
[14] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 050304
[15] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 050304
Viewed
Full text


Abstract