Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 050501    DOI: 10.1088/0256-307X/30/5/050501
GENERAL |
Local Property of Recurrence Network for Investigating Gas-Liquid Two-Phase Flow Characteristics
ZHANG Xin-Wang, JIN Ning-De**, GAO Zhong-Ke, ZHAI Lu-Sheng
School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072
Cite this article:   
ZHANG Xin-Wang, JIN Ning-De, GAO Zhong-Ke et al  2013 Chin. Phys. Lett. 30 050501
Download: PDF(835KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Understanding the dynamics of gas-liquid two-phase flows is a challenge in the fields of nonlinear dynamics. We first construct and analyze a recurrence network from Chen's chaotic system and find that the network local statistic is feasible to characterize chaotic dynamics associated with unstable periodic orbits. Then we construct recurrence networks from gas-liquid two-phase flow experimental signals and associate the network topological statistic with the flow pattern dynamics. The results indicate that the recurrence network could be a powerful tool for the dynamic characterization of experimental gas-liquid two-phase flows.
Received: 23 January 2013      Published: 31 May 2013
PACS:  05.45.Tp (Time series analysis)  
  47.55.Ca (Gas/liquid flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/050501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/050501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xin-Wang
JIN Ning-De
GAO Zhong-Ke
ZHAI Lu-Sheng
[1] Fernandes R C, Semiat R and Dukler A E 1983 AIChE J. 29 981
[2] Zhang Z Y and Shi L 1999 J. Appl. Phys. 85 7544
[3] Park S H, Kang Y and Kim S D 2001 Chem. Eng. Sci. 56 6259
[4] Kulkarni A A, Joshi J B, Kumarb V R and Kulkarni B D 2001 Chem. Eng. Sci. 56 5305
[5] Mandal T K, Bhuyan M K, Das G and Das P K 2008 Chem. Eng. Res. Des. 86 269
[6] Mandal T K, Das G and Das P K 2010 Int. J. Multiphase Flow 36 661
[7] Watts D J and Strogatz S H 1998 Nature 393 440
[8] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[9] Huang L, Park K, Lai Y C, Yang L and Yang K Q 2006 Phys. Rev. Lett. 97 164101
[10] Zhao H and Gao Z Y 2006 Chin. Phys. Lett. 23 2311
[11] Jiang Z Q, Zhou W X, Xu B and Yuan W K 2007 AIChE J. 53 423
[12] Zhou J, Lu J A and Lu J H 2008 Automatica 44 996
[13] Guo L and Cai X 2009 Chin. Phys. Lett. 26 088901
[14] Yu W, Cao J, Chen G, Lü J, Han J and Wei W 2009 IEEE Trans. Syst. Man Cybern. Part B 39 230
[15] Lu X B, Wang X F and Fang J Q 2010 Physica D 239 341
[16] Shang M S, Chen D B and Zhou T 2010 Chin. Phys. Lett. 27 058901
[17] Rong Z H, Wu Z X and Wang W X 2010 Phys. Rev. E 82 047101
[18] Ye Z Q, Zhang K, Hu S N and Yu J 2012 Chin. Phys. Lett. 29 098901
[19] Zhang J and Small M 2006 Phys. Rev. Lett. 96 238701
[20] Zhang J, Sun J, Luo X, Zhang K, Nakamura T and Small M 2008 Physica D 237 2856
[21] Yang Y and Yang H J 2008 Physica A 387 1381
[22] Lacasa L and Toral R 2010 Phys. Rev. E 82 036120
[23] Liu C, Zhou W X and Yuan W K 2010 Physica A 389 2675
[24] Li P and Wang B H 2007 Physica A 378 519
[25] Xu X, Zhang J and Small M 2008 Proc. Natl. Acad. Sci. USA 105 19601
[26] Marwan N, Donges J F, Zou Y, Donner R V and Kurths J 2009 Phys. Lett. A 373 4246
[27] Gao Z K and Jin N D 2009 Chaos 19 033137
[28] Donner R V, Zou Y, Donges J F, Marwan N and Kurths J 2010 New J. Phys. 12 033025
[29] Donner R V, Heitzig J, Donges J F, Zou Y, Marwan N and Kurths J 2011 Eur. Phys. J. B 84 653
[30] Donges J F, Heitzig J, Donner R V and Kurths J 2012 Phys. Rev. E 85 046105
[31] Shimada Y, Ikeguchi T and Shigehara T 2012 Phys. Rev. Lett. 109 158701
[32] Donges J F, Zou Y, Marwan N and Kurths J 2009 Europhys. Lett. 87 48007
[33] Song D M, Jiang Z Q and Zhou W X 2009 Physica A 388 2450
[34] Sun W G, Cao J T and Wang R B 2011 Chin. Phys. Lett. 28 068701
[35] Zhang J, Zhang K, Feng J F and Small M 2010 PLoS Comput. Biol. 6 e1001033
[36] Li X and Dong Z 2011 Phys. Rev. E 84 062901
[37] Hempel S, Koseska A, Kurths J and Nikoloski Z 2011 Phys. Rev. Lett. 107 054101
[38] Gao Z K, Jin N D, Wang W X and Lai Y C 2010 Phys. Rev. E 82 016210
[39] Gao Z K and Jin N D 2011 Chem. Eng. Sci. 66 2660
[40] Gao Z K and Jin N D 2012 Physica A 391 3005
[41] Jin N D, Xin Z, Wang J, WangZ Y Jia X H and Chen W P 2008 Meas. Sci. Technol. 19 045403
[42] Takens F 1981 Dynamical Syst. Turbulence Lecture Notes Math. 898 366
[43] Chen G and Ueta T 1999 Int. J. Bifurcation Chaos Appl. Sci. Eng. 9 1465
[44] Hunt B and Ott E 1996 Phys. Rev. Lett. 76 2254
Related articles from Frontiers Journals
[1] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 050501
[2] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 050501
[3] Sheng-Li Zhu, Lu Gan. Specific Emitter Identification Based on Visibility Graph Entropy[J]. Chin. Phys. Lett., 2018, 35(3): 050501
[4] Yi Ji, Hong-Bo Xie. Generalized Multivariate Singular Spectrum Analysis for Nonlinear Time Series De-Noising and Prediction[J]. Chin. Phys. Lett., 2017, 34(12): 050501
[5] Sheng-Li Zhu, Lu Gan. Chaos Identification Based on Component Reordering and Visibility Graph[J]. Chin. Phys. Lett., 2017, 34(5): 050501
[6] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 050501
[7] Jian Jiang, Hong-Bo Xie. Denoising Nonlinear Time Series Using Singular Spectrum Analysis and Fuzzy Entropy[J]. Chin. Phys. Lett., 2016, 33(10): 050501
[8] Wei Zheng, Qian Pan, Chen Sun, Yu-Fan Deng, Xiao-Kang Zhao, Zhao Kang. Fractal Analysis of Mobile Social Networks[J]. Chin. Phys. Lett., 2016, 33(03): 050501
[9] ZHANG Ang-Hui, LI Xiao-Wen, SU Gui-Feng, ZHANG Yi. A Multifractal Detrended Fluctuation Analysis of the Ising Financial Markets Model with Small World Topology[J]. Chin. Phys. Lett., 2015, 32(09): 050501
[10] HAO Qing-Yang, JIN Ning-De, HAN Yun-Feng, GAO Zhong-Ke, ZHAI Lu-Sheng. Multi-Scale Time Asymmetry for Detecting the Breakage of Slug Flow Structure[J]. Chin. Phys. Lett., 2014, 31(12): 050501
[11] QU Hua, MA Wen-Tao, ZHAO Ji-Hong, CHEN Ba-Dong. Kernel Least Mean Kurtosis Based Online Chaotic Time Series Prediction[J]. Chin. Phys. Lett., 2013, 30(11): 050501
[12] FAN Chun-Ling, JIN Ning-De, CHEN Xiu-Ting, GAO Zhong-Ke. Multi-Scale Permutation Entropy: A Complexity Measure for Discriminating Two-Phase Flow Dynamics[J]. Chin. Phys. Lett., 2013, 30(9): 050501
[13] JIANG Jian, WANG Ru, Pezeril Michel, Wang Qiuping Alexandre. Long Division Unites or Long Union Divides: a Model for Social Network Evolution[J]. Chin. Phys. Lett., 2013, 30(3): 050501
[14] YAN Chuan-Kui, WANG Ru-Bin. Non-identical Neural Network Synchronization Study Based on an Adaptive Learning Rule of Synapses[J]. Chin. Phys. Lett., 2012, 29(9): 050501
[15] QU Jing-Yi, and WANG Ru-Bin. Dynamics of a Cortical Neural Network Based on a Simple Model[J]. Chin. Phys. Lett., 2012, 29(8): 050501
Viewed
Full text


Abstract