GENERAL |
|
|
|
|
An Alternative Approach to Construct the Initial Hamiltonian of the Adiabatic Quantum Computation |
DUAN Qian-Heng1**, ZHANG Shuo1, WU Wei1, CHEN Ping-Xing1,2 |
1Department of Physics, National University of Defense Technology, Changsha 410073 2State Key Laboratory of High Performance Computing, National University of Defence Technology, Changsha 410073
|
|
Cite this article: |
DUAN Qian-Heng, ZHANG Shuo, WU Wei et al 2013 Chin. Phys. Lett. 30 010302 |
|
|
Abstract The adiabatic quantum computation (AQC) has been proven to be equivalent to the standard circuit model. Conventionally, AQC evolves from the initial Hamiltonian which has a uniform equal superposition of the computational basis to the final Hamiltonian whose ground state encodes the solution to a computation problem. We propose an alternative approach to construct the initial Hamiltonian of the AQC which has an unequal superposition of the possible solutions to the problem and show that an educated guess can improve the performance of AQC.
|
|
Received: 09 October 2012
Published: 04 March 2013
|
|
PACS: |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
|
|
|
[1] Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 Science 292 472 [2] Aharonov D, van Dam M, Kempe J, Landau Z, Lloyd S and Regev O 2007 SIAM J. Comput. 37 166 [3] Mizel A, Lidar D A and Mitchell M 2007 Phys. Rev. Lett. 99 070502 [4] Childs A M, Farhi E and Preskill J 2001 Phys. Rev. A 65 012322 [5] Shenvi N, Brown K R and Whaley K B 2003 Phys. Rev. A 68 052313 [6] Roland J and Cerf N J 2005 Phys. Rev. A 71 032330 [7] Aberg J, Kult D and Sjoqvist E 2005 Phys. Rev. A 71 060312(R) [8] Steffen M, Dam W V, Hogg T, Breyta G and Chuang I 2003 Phys. Rev. Lett. 90 067903 [9] Peng X H, Liao Z Y, Xu X Y, Qin G, Zhou X Y, Suter D and Du J F 2008 Phys. Rev. Lett. 101 220405 [10] Perdomo A, Truncik C, Tubert-Brohman I, Rose G and Aspuru-Guzik A 2008 Phys. Rev. A 78 012320 [11] Gaitan F and Clark L 2012 Phys. Rev. Lett. 108 010501 [12] Bian Z B, Chudak F, Macready W G, Clark L and Gaitan F 2012 arXiv:1201.1842v2[quant-ph] [13] Xu N Y, Zhu J, Lu D W, Zhou X Y, Peng X H and Du J F 2012 Phys. Rev. Lett. 108 130501 [14] Garnerone S, Zanardi P and Lidar D A 2012 Phys. Rev. Lett. 108 230506 [15] Hogg T 1998 Phys. Rev. Lett. 80 2473 [16] Hogg T 2000 Phys. Rev. A 61 052311 [17] Perdomo A, Andraca S E V and Guzik A A 2011 Quantum Inform. Process 10 33 [18] Messiah A 1999 Quantum Mechanics (New York: Dover) [19] Tong D M 2010 Phys. Rev. Lett. 104 120401 [20] Marzlin K P and Sanders B C 2004 Phys. Rev. Lett. 93 160408 [21] Tong D M, Singh K, Kwek L C and Oh C H 2005 Phys. Rev. Lett. 95 110407 [22] Tong D M, Singh K, Kwek L C and Oh C H 2007 Phys. Rev. Lett. 98 150402 [23] Rezakhani A T, Kuo W J, Hamma A, Lidar D A and Zanardi P 2009 Phys. Rev. Lett. 103 080502 [24] Tulsi A 2009 Phys. Rev. A 80 052328 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|