Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 010302    DOI: 10.1088/0256-307X/30/1/010302
GENERAL |
An Alternative Approach to Construct the Initial Hamiltonian of the Adiabatic Quantum Computation
DUAN Qian-Heng1**, ZHANG Shuo1, WU Wei1, CHEN Ping-Xing1,2
1Department of Physics, National University of Defense Technology, Changsha 410073
2State Key Laboratory of High Performance Computing, National University of Defence Technology, Changsha 410073
Cite this article:   
DUAN Qian-Heng, ZHANG Shuo, WU Wei et al  2013 Chin. Phys. Lett. 30 010302
Download: PDF(462KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The adiabatic quantum computation (AQC) has been proven to be equivalent to the standard circuit model. Conventionally, AQC evolves from the initial Hamiltonian which has a uniform equal superposition of the computational basis to the final Hamiltonian whose ground state encodes the solution to a computation problem. We propose an alternative approach to construct the initial Hamiltonian of the AQC which has an unequal superposition of the possible solutions to the problem and show that an educated guess can improve the performance of AQC.
Received: 09 October 2012      Published: 04 March 2013
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/010302       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/010302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DUAN Qian-Heng
ZHANG Shuo
WU Wei
CHEN Ping-Xing
[1] Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 Science 292 472
[2] Aharonov D, van Dam M, Kempe J, Landau Z, Lloyd S and Regev O 2007 SIAM J. Comput. 37 166
[3] Mizel A, Lidar D A and Mitchell M 2007 Phys. Rev. Lett. 99 070502
[4] Childs A M, Farhi E and Preskill J 2001 Phys. Rev. A 65 012322
[5] Shenvi N, Brown K R and Whaley K B 2003 Phys. Rev. A 68 052313
[6] Roland J and Cerf N J 2005 Phys. Rev. A 71 032330
[7] Aberg J, Kult D and Sjoqvist E 2005 Phys. Rev. A 71 060312(R)
[8] Steffen M, Dam W V, Hogg T, Breyta G and Chuang I 2003 Phys. Rev. Lett. 90 067903
[9] Peng X H, Liao Z Y, Xu X Y, Qin G, Zhou X Y, Suter D and Du J F 2008 Phys. Rev. Lett. 101 220405
[10] Perdomo A, Truncik C, Tubert-Brohman I, Rose G and Aspuru-Guzik A 2008 Phys. Rev. A 78 012320
[11] Gaitan F and Clark L 2012 Phys. Rev. Lett. 108 010501
[12] Bian Z B, Chudak F, Macready W G, Clark L and Gaitan F 2012 arXiv:1201.1842v2[quant-ph]
[13] Xu N Y, Zhu J, Lu D W, Zhou X Y, Peng X H and Du J F 2012 Phys. Rev. Lett. 108 130501
[14] Garnerone S, Zanardi P and Lidar D A 2012 Phys. Rev. Lett. 108 230506
[15] Hogg T 1998 Phys. Rev. Lett. 80 2473
[16] Hogg T 2000 Phys. Rev. A 61 052311
[17] Perdomo A, Andraca S E V and Guzik A A 2011 Quantum Inform. Process 10 33
[18] Messiah A 1999 Quantum Mechanics (New York: Dover)
[19] Tong D M 2010 Phys. Rev. Lett. 104 120401
[20] Marzlin K P and Sanders B C 2004 Phys. Rev. Lett. 93 160408
[21] Tong D M, Singh K, Kwek L C and Oh C H 2005 Phys. Rev. Lett. 95 110407
[22] Tong D M, Singh K, Kwek L C and Oh C H 2007 Phys. Rev. Lett. 98 150402
[23] Rezakhani A T, Kuo W J, Hamma A, Lidar D A and Zanardi P 2009 Phys. Rev. Lett. 103 080502
[24] Tulsi A 2009 Phys. Rev. A 80 052328
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 010302
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 010302
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 010302
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 010302
[5] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 010302
[6] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 010302
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 010302
[8] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 010302
[9] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 010302
[10] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 010302
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 010302
[12] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 010302
[13] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 010302
[14] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 010302
[15] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 010302
Viewed
Full text


Abstract