Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 010303    DOI: 10.1088/0256-307X/30/1/010303
GENERAL |
One-Way Quantum Computation with Cluster State and Probabilistic Gate
DIAO Da-Sheng**
School of Science, Shandong University of Science and Technology, Qingdao 266510
Cite this article:   
DIAO Da-Sheng 2013 Chin. Phys. Lett. 30 010303
Download: PDF(452KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a scheme for efficiently constructing a two-dimensional cluster state, which serves as the central physical resource for one-way quantum computation. In this scheme, we successfully make the required computational overhead scale efficiently with the qubit number by using a probabilistic entangling quantum gate.
Received: 17 August 2012      Published: 04 March 2013
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/010303       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/010303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DIAO Da-Sheng
[1] Preskill J 1998 Lecture Notes on Physics vol 229 Quantum information and computation available at http://www.theory.caltech.edu/people/preskill/ph229/
[2] Barenco A et al 1995 Phys. Rev. A 52 3457
[3] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[4] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[5] Leung D W 2001 arXiv:quant-ph/0111122
[6] Leung D W 2004 Int. J. Quant. Infor. 2 33
[7] Nielsen M A 2003 Phys. Lett. A 308 96
[8] Nielsen M A 2004 Phys. Rev. Lett. 93 040503
[9] Walther P et al 2005 Nature 434 169
[10] Duan L M and Kimble H J 2004 Phys. Rev. Lett. 92 127902
[11] Duan L M and Kimble H J 2003 Phys. Rev. Lett. 90 253601
[12] Duan L M, Wang B and Kimble H J 2005 Phys. Rev. A 72 032333
[13] Duan L M and Raussendorf R 2005 Phys. Rev. Lett. 95 080503
[14] Blinov B B, Moehring D L, Duan L M and Monroe C 2004 Nature 428 153
[15] Kuzmich A et al 2003 Nature 423 731
[16] Barrett S D and Kok P 2005 Phys. Rev. A 71 060310(R)
[17] Browne D E and Rudolph T 2005 Phys. Rev. Lett. 95 010501
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 010303
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 010303
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 010303
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 010303
[5] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 010303
[6] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 010303
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 010303
[8] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 010303
[9] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 010303
[10] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 010303
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 010303
[12] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 010303
[13] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 010303
[14] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 010303
[15] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 010303
Viewed
Full text


Abstract