Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 010301    DOI: 10.1088/0256-307X/30/1/010301
GENERAL |
Double Barrier Resonant Tunneling in Spin-Orbit Coupled Bose–Einstein Condensates
LI Zhi1, WANG Jian-Zhong1, FU Li-Bin2,3**
1School of Physics, Beijing Institute of Technology, Beijing 100081
2National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088
3Center for Applied Physics and Technology, Peking University, Beijing 100084
Cite this article:   
LI Zhi, WANG Jian-Zhong, FU Li-Bin 2013 Chin. Phys. Lett. 30 010301
Download: PDF(546KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the double barrier tunneling properties of Dirac particles in spin-orbit coupled Bose–Einstein Condensates. The analytic expression of the transmission coefficient of Dirac particles penetrating into a double barrier is obtained. An interesting resonance tunneling phenomenon is discovered in the Klein block region which has been ignored before.
Received: 13 September 2012      Published: 04 March 2013
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.65.Nk (Scattering theory)  
  67.85.Fg (Multicomponent condensates; spinor condensates)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/010301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/010301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Zhi
WANG Jian-Zhong
FU Li-Bin
[1] Hauge E H and St?vneng J A 1989 Rev. Mod. Phys. 61 917
[2] Chang L L, Esaki L and Tsu R 1974 Appl. Phys. Lett. 24 593
[3] Ricco B and Azbel M Y 1984 Phys. Rev. B 29 1970
[4] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[5] Dombey N and Calogeracos A 1999 Phys. Rep. 315 41
[6] Dombey N, Kennedy P and Calogeracos A 2000 Phys. Rev. Lett. 85 1787
[7] Kennedy P and Dombey N 2002 J. Phys. A: Math. Gen. 35 6645
[8] Víllalba V M and González-árraga L A 2010 Phys. Scr. 81 025010
[9] López A, Rendón O, Villalba V M and Medina E 2007 Phys. Rev. B 75 033401
[10] Villalba V M and Greiner W 2003 Phys. Rev. A 67 052707
[11] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[12] Huang X R, Siddons D P, Macrander A T, Peng R W and Wu X S 2012 Phys. Rev. Lett. 108 224801
[13] Lin Y J et al 2009 Nature 462 628
[14] Lin Y J et al 2011 Nature 471 83
[15] Wang C J, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403
[16] Zhu S L, Wang B and Duan L M 2007 Phys. Rev. Lett. 98 260402
[17] Zhang D W, Xue Z Y, Yan H, Wang Z D and Zhu S L 2012 Phys. Rev. A 85 013628
[18] Xue J K and Tie L 2011 Chin. Phys. B 20 120311
[19] Cong S H, Sun G Z and Wang Y W 2011 Chin. Phys. B 20 050316
[20] Ma Y, Fu L B, Yang Z A and Liu J 2006 Acta Phys. Sin. 55 5623 (in Chinese)
[21] Lee C, Huang J, Deng H, Dai H and Xu J 2012 Front. Phys. 7 109
[22] Lee C and Brand J 2006 Europhys. Lett. 73 321
Related articles from Frontiers Journals
[1] Haipeng Xue, Lingchii Kong, and Biao Wu. Logarithmic Quantum Time Crystal[J]. Chin. Phys. Lett., 2022, 39(8): 010301
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 010301
[3] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 010301
[4] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 010301
[5] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 010301
[6] Hao Li, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect[J]. Chin. Phys. Lett., 2020, 37(3): 010301
[7] Yu Mo, Cong Zhang, Shiping Feng, Shi-Jie Yang. Solitonic Diffusion of Wavepackets in One-Dimensional Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(12): 010301
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 010301
[9] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 010301
[10] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 010301
[11] Bao-Guo Yang, Peng-Ju Tang, Xin-Xin Guo, Xu-Zong Chen, Biao Wu, Xiao-Ji Zhou. Period-Doubled Bloch States in a Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2018, 35(7): 010301
[12] Peng Peng, Liang-Hui Huang, Dong-Hao Li, Zeng-Ming Meng, Peng-Jun Wang, Jing Zhang. Experimental Observation of Spin-Exchange in Ultracold Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(3): 010301
[13] Xu-Dan Chai, Zi-Fa Yu, Ai-Xia Zhang, Ju-Kui Xue. Sound Wave of Spin–Orbit Coupled Bose–Einstein Condensates in Optical Lattice[J]. Chin. Phys. Lett., 2017, 34(9): 010301
[14] Zheng Zhou, Hong-Hua Zhong, Bo Zhu, Fa-Xin Xiao, Ke Zhu, Jin-Tao Tan. Collision Dynamics of Dissipative Matter-Wave Solitons in a Perturbed Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(11): 010301
[15] Yu-E Li, Ju-Kui Xue. Moving Matter-Wave Solitons in Spin–Orbit Coupled Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2016, 33(10): 010301
Viewed
Full text


Abstract