Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 084207    DOI: 10.1088/0256-307X/29/8/084207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Effect of Oxygen Vacancy on the Band Gap and Nanosecond Laser-Induced Damage Threshold of Ta2O5 Films
XU Cheng1,2**, YANG Shuai1, WANG Ji-Fei1, NIU Ji-Nan1, MA Hao1, QIANG Ying-Huai1**, LIU Jiong-Tian2, LI Da-Wei3, TAO Chun-Xian4
1School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116
2School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116
3Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
4Shanghai Key Laboratory of Modern Optics System, School of Optics-Electrical and Computer Engineering, University of Shanghai for Science and technology, Shanghai 200093
Cite this article:   
Download: PDF(1334KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ta2O5 films are deposited on fused silica substrates by electron beam evaporation method. The optical property, x-ray photoelectron spectroscopy, band gap and nanosecond laser-induced damage threshold (LIDT) of the films before and after annealing are studied. It is found that the existence of an oxygen vacancy results in the decrease of the transmittance, refractive index, both macroscopic band gap and microscopic band gap, and the LIDT of Ta2O5 films. If the oxygen vacancy forms, the macroscopic band gap decreases 2%. However, when the oxygen vacancy forms the microscopic band gap decreases 73% for crystalline Ta2O5 and 77% for amorphous Ta2O5. The serious decrease of microscopic band gap may significantly increase the absorbance of the micro-area in Ta2O5 films when irradiated by laser, thus the damage probability increases. It is consistent with our experimental results that the LIDT of the as-deposited Ta2O5 films is 7.3 J/cm2, which increases 26% to 9.2 J/cm2 when the oxygen vacancy is eliminated after annealing.
Received: 02 May 2012      Published: 31 July 2012
PACS:  42.79.-e (Optical elements, devices, and systems)  
  68.60.-p (Physical properties of thin films, nonelectronic)  
  81.15.Ef  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/084207       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/084207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Wolfe C R, Kozlowski M R, Campbell J H, Rainer F, Morgan A J and Gonzales R P 1989 Proc. SPIE 1438 360
[2] Zhao Y A, Wang Y J, Gong H, Shao J D and Fan Z X 2003 Appl. Surf. Sci. 210 353
[3] Xu C, Xiao Q, Ma J, Jin Y, Shao J and Fan Z 2008 Appl. Surf. Sci. 254 6554
[4] Xu C, Qiang Y, Zhu Y, Guo L, Shao J and Fan Z 2010 Chin. Phys. Lett. 27 114205
[5] Xu C, Ma J, Jin Y, He H, Shao J and Fan Z 2008 Chin. Phys. Lett. 25 1321
[6] Atuchin V V, Grivel J -C and Zhang Z 2009 Chem. Phys. 360 74
[7] Atuchin V V, Grivel J -C, Korotkov A S and Zhang Z 2008 J. Solid State Chem. 181 1285
[8] Pustovarov V A, Perevalov T V, Gritsenko V A, Smirnov T P and Yelisseyev A P 2011 Thin Solid Films 519 6319
[9] Perevalov T V and Gritsenko V A 2011 J. Exp. Theor. Phys. 112 310
[10] Ivanov M V, Perevalov T V, Aliev V Sh, Gritsenko V A and Kaichev V V 2011 J. Exp. Theor. Phys. 112 1035
[11] Ivanov M V, Perevalov T V, Aliev V S, Gritsenko V A and Kaichev V V 2011 J. Appl. Phys. 110 024115
[12] ISO 11254-1 2000 Lasers and Laser-Related Equipment-Determination of Laser-Induced Damage Threshold of Optical Surfaces Part I 1-on-1 test
[13] Hu H, Fan Z and Luo F 2001 Appl. Opt. 40 1950
[14] Tauc J 1974 Amorphous and Liquid Semiconductors (New York: Plenum)
[15] Meng L J and Dos Santos M P 1993 Thin Solid Films 226 22
[16] Demiryont H, Sites J R and Geib K 1985 Appl. Opt. 24 490
[17] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[18] Shvets V A, Aliev V Sh, Gritsenko D V, Shaimeev S S, Fedosenko E V, Rykhlitski S V, Atuchin V V, Gritsenko V A, Tapilin V M and Wong H 2008 J. Non-Cryst. Solids 354 3025
[19] Fleming R M, Lang D V, Jones C D W, Steigerwald M L, Murphy D W, Alers G B, Wong Y H, van Dover R B, Kwo J R and Sergent A M 2000 J. Appl. Phys. 88 850
[20] Xu C, Dong H, Yuan L, He H, Shao J and Fan Z 2009 Opt. Laser Technol. 41 258
[21] Papernov S and Schmid A W 1997 J. Appl. Phys. 82 5422
[22] Gallais L, Capoulade J, Natoli J and Commandré M 2008 J. Appl. Phys. 104 053120
Related articles from Frontiers Journals
[1] Lei Geng, Hao Liang, and Liang-You Peng. Laser-Induced Electron Fresnel Diffraction in Tunneling and Over-Barrier Ionization[J]. Chin. Phys. Lett., 2022, 39(4): 084207
[2] Xiaopeng Zhou, Xinning Zeng, Xuyang Ning, Abdusalam Abdukerim, Wei Chen, Xun Chen, Yunhua Chen, Chen Cheng, Xiangyi Cui, Yingjie Fan, Deqing Fang, Changbo Fu, Mengting Fu, Lisheng Geng, Karl Giboni, Linhui Gu, Xuyuan Guo, Ke Han, Changda He, Di Huang, Yan Huang, Yanlin Huang, Zhou Huang, Xiangdong Ji, Yonglin Ju, Shuaijie Li, Huaxuan Liu, Jianglai Liu, Xiaoying Lu, Wenbo Ma, Yugang Ma, Yajun Mao, Yue Meng, Kaixiang Ni, Jinhua Ning, Xiangxiang Ren, Changsong Shang, Guofang Shen, Lin Si, Andi Tan, Anqing Wang, Hongwei Wang, Meng Wang, Qiuhong Wang, Siguang Wang, Wei Wang, Xiuli Wang, Zhou Wang, Mengmeng Wu, Shiyong Wu, Weihao Wu, Jingkai Xia, Mengjiao Xiao, Pengwei Xie, Binbin Yan, Jijun Yang, Yong Yang, Chunxu Yu, Jumin Yuan, Ying Yuan, Dan Zhang, Tao Zhang, Li Zhao, Qibin Zheng, Jifang Zhou, and Ning Zhou (PandaX-II Collaboration). Erratum: A Search for Solar Axions and Anomalous Neutrino Magnetic Moment with the Complete PandaX-II Data [CHIN. PHYS. LETT. 38 (2021) 011301][J]. Chin. Phys. Lett., 2021, 38(10): 084207
[3] Xin Ni, Kunpeng Jia, Xiaohan Wang, Huaying Liu, Jian Guo, Shu-Wei Huang, Baicheng Yao, Nicolò Sernicola, Zhenlin Wang, Xinjie Lv, Gang Zhao, Zhenda Xie, and Shi-Ning Zhu. Broadband Sheet Parametric Oscillator for $\chi^{(2)}$ Optical Frequency Comb Generation via Cavity Phase Matching[J]. Chin. Phys. Lett., 2021, 38(6): 084207
[4] Jun-xia Zhou, Ren-hong Gao, Jintian Lin, Min Wang, Wei Chu, Wen-bo Li, Di-feng Yin, Li Deng, Zhi-wei Fang, Jian-hao Zhang, Rong-bo Wuand Ya Cheng. Electro-Optically Switchable Optical True Delay Lines of Meter-Scale Lengths Fabricated on Lithium Niobate on Insulator Using Photolithography Assisted Chemo-Mechanical Etching[J]. Chin. Phys. Lett., 2020, 37(8): 084207
[5] Shining Zhu. Meter-Level Optical Delay Line on a Low-Loss Lithium Niobate Nanophotonics Chip[J]. Chin. Phys. Lett., 2020, 37(8): 084207
[6] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 084207
[7] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 084207
[8] Dan Sun, Yao Lu, Jin-Bo Hao, Kai-Ge Wang. High Optical Magnification Three-Dimensional Integral Imaging of Biological Micro-organism[J]. Chin. Phys. Lett., 2017, 34(7): 084207
[9] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 084207
[10] LIANG Hui-Min, WANG Jing-Quan, WANG Xue, WANG Gui-Mei. Surface Plasmon Interference Lithography Assisted by a Fabry–Perot Cavity Composed of Subwavelength Metal Grating and Thin Metal Film[J]. Chin. Phys. Lett., 2015, 32(10): 084207
[11] XU Cheng, LIN Di, NIU Ji-Nan, QIANG Ying-Huai, LI Da-Wei, TAO Chun-Xian. Preparation of Ta-Doped TiO2 Using Ta2O5 as the Doping Source[J]. Chin. Phys. Lett., 2015, 32(08): 084207
[12] XIAO Yu, LI Can, XU Shan-Hui, FENG Zhou-Ming, YANG Chang-Sheng, ZHAO Qi-Lai, YANG Zhong-Min. Simultaneously Suppressing Low-Frequency and Relaxation Oscillation Intensity Noise in a DBR Single-Frequency Phosphate Fiber Laser[J]. Chin. Phys. Lett., 2015, 32(06): 084207
[13] ZENG Yong-Ping, LIU Wen-Jie, WENG Guo-En, ZHAO Wan-Ru, ZUO Hai-Jie, YU Jian, ZHANG Jiang-Yong, YING Lei-Ying, ZHANG Bao-Ping. Effect of In Diffusion on the Property of Blue Light-Emitting Diodes[J]. Chin. Phys. Lett., 2015, 32(06): 084207
[14] ZHOU Guo-Rui, LV Hai-Bing, YUAN Xiao-Dong, ZHOU Hai, LIU Hao, LI Ke-Xin, CHENG Xiao-Feng, MIAO Xin-Xiang. Liquid Concentration Sensing Properties of Microfibers with a Nanoscale-Structured Film[J]. Chin. Phys. Lett., 2015, 32(03): 084207
[15] PENG Yu, GAN Xue-Tao, JU Pei, WANG Ya-Dong, ZHAO Jian-Lin. Measuring Topological Charges of Optical Vortices with Multi-Singularity Using a Cylindrical Lens[J]. Chin. Phys. Lett., 2015, 32(02): 084207
Viewed
Full text


Abstract