CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO3 |
WANG Qing-Yan1,2, LI Zhi2, ZHANG Wen-Hao1, ZHANG Zuo-Cheng1, ZHANG Jin-Song1, LI Wei1, DING Hao1, OU Yun-Bo2, DENG Peng1, CHANG Kai1, WEN Jing1, SONG Can-Li1, HE Ke2, JIA Jin-Feng1, JI Shuai-Hua1, WANG Ya-Yu1, WANG Li-Li2, CHEN Xi1, MA Xu-Cun2**, XUE Qi-Kun1** |
1State Key Lab of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084
2Institute of Physics, Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article: |
|
|
|
Abstract We report high transition temperature superconductivity in one unit-cell (UC) thick FeSe films grown on a Se-etched SrTiO3(001) substrate by molecular beam epitaxy (MBE). A superconducting gap as large as 20 meV and the magnetic field induced vortex state revealed by in situ scanning tunneling microscopy (STM) suggest that the superconductivity of the 1 UC FeSe films could occur around 77 K. The control transport measurement shows that the onset superconductivity temperature is well above 50 K. Our work not only demonstrates a powerful way for finding new superconductors and for raising TC, but also provides a well-defined platform for systematic studies of the mechanism of unconventional superconductivity by using different superconducting materials and substrates.
|
Keywords:
74.25.F-
74.55.+v
74.70.Xa
|
|
Received: 01 February 2012
Published: 11 March 2012
|
|
PACS: |
74.25.F-
|
(Transport properties)
|
|
74.55.+v
|
(Tunneling phenomena: single particle tunneling and STM)
|
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
|
|
|
[1] Bednorz J G and Müller K A 1986 Z. Phys. 64 189193 [2] Wu M K, Ashburn J R, Tomg C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q and Chu C W 1987 Phys. Rev. Lett. 58 908 [3] Strongin M, Kammetrer O F, Crow J E, Parks R D, Douglass J and Jensen M A 1968 Phys. Rev. Lett. 21 1320 [4] Locquet J P et al 1998 Nature 394 453 [5] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. U. S.A. 105 14262 [6] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 [7] Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Huang H H, Wu C J, Ma X C, Chen X and Xue Q K 2011 Science 332 1410 [8] Song C L, Wang Y L, Jiang Y P, Li Z, Wang L L, He K, Chen X, Ma X C and Xue Q K 2011 Phys. Rev. B 84 020503 [9] Song Y J, Hong J B, Min B H, Lee K J, Jung M H, Rhyee J S and Kwon Y S 2011 J. Korean Phys. Soc. 59 312 [10] Medvedev S, Mcqueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C 2009 Nature Mater. 8 630 [11] Luh D A, Miller T, Paggel J J and Chiang T C 2002 Phys. Rev. Lett. 88 256802 [12] Zhang T et al 2010 Nature Phys. 6 104 [13] Uchihashi T, Mishra P, Aono M and Nakayama T 2011 Phys. Rev. Lett. 107 207001 [14] Reyren N et al 2007 Science 317 1196 [15] Guo J et al 2010 Phys. Rev. B 82 180520(R) [16] Li W, Ding H, Deng P, Chang K, Song C L, He K, Wang L L, Ma X C, Hu J P, Chen X and Xue Q K 2012 Nature Phys. 8 126 [17] Bozovic I, Logvenov G, Verhoeven M A J, Caputo P, Goldobin E and Geballe T H 2003 Nature 422 873 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|