GENERAL |
|
|
|
|
Noise-Induced Voltage Collapse in Power Systems |
WEI Du-Qu1**, LUO Xiao-Shu1, ZHANG Bo2 |
1College of Electronic Engineering, Guangxi Normal University, Guilin 541004
2College of Electric Power, South China University of Technology, Guangzhou 510640
|
|
Cite this article: |
ZHANG Bo, WEI Du-Qu, LUO Xiao-Shu 2012 Chin. Phys. Lett. 29 030501 |
|
|
Abstract We investigate numerically the influences of Gaussian white noise on the dynamical behaviors of power systems. The studied model is a three-bus system at some specific parameters, and it demonstrates a stable regime that is far from collapse. It is found that with the increasing noise intensity σ, power systems become unstable and fall into oscillations; as σ is further increased, noise-induced voltage collapse in power systems takes place. Our results confirm that the presence of noise has a detrimental effect on power system operation. Furthermore, the possible mechanism behind the action of noise is addressed based on a dynamical approach where the bifurcation of the system is analyzed. Our results may provide useful information for avoiding instability problems in power systems.
|
Keywords:
05.45.-a
05.40.-a
73.50.Td
|
|
Received: 22 October 2011
Published: 11 March 2012
|
|
PACS: |
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
73.50.Td
|
(Noise processes and phenomena)
|
|
|
|
|
[1] Guo F, Zhou Y R and Zhang Y 2010 Chin. Phys. Lett. 27 090506
[2] Yang Z L, Gao Y, Gao Y T and Zhang J 2009 Chin. Phys. Lett. 26 060506
[3] Ma J, Yang L J, Wu Y and Zhang C R 2010 Commun. Theor. Phys. 54 583
[4] Hasegawa H 2008 Physica D 237 137
[5] Mallick K and Marcq P 2003 Eur. Phys. J. B 36 119
[6] Billings L, Schwartz I B, Morgan D S, Bollt E M, Meucci R and Allaria E 2004 Phys. Rev. E 70 026220
[7] Mankin R, Laas T, Sauga A and Ainsaar A 2006 Phys. Rev. E 74 021101
[8] Xu B, Lai Y C, Zhu L and Do Y 2003 Phys. Rev. Lett. 90 164101
[9] Tel T, Lai Y C and Gruiz M 2008 Int. J. Bifur. Chaos Appl. Sci. Eng. 18 509
[10] Patnaik P R 2005 Chaos, Solitons & Fractals 26 759
[11] Yu Y N 1983 Electric Power System Dynamics (New York: Academic)
[12] Carreras B A, Lynch V E, Dobson I and Newman D E 2002 Chaos 12 985
[13] Kinney R, Crucitti P, Albert R and Latora V 2005 Eur. Phys. J. B 46 101
[14] Kundur P 1993 Power System Stability and Control (New York: McGraw, Hill)
[15] Ji W and Venkatasubramanian V 1999 IEEE Tran. Cir. Syst. I 46 405
[16] Filatrella G, Nielsen A H and Pedersen N F 2008 Eur. Phys. J. B 61 485
[17] Kwatny H G and Bahar L Y 1986 IEEE Trans. Circ. Syst. 33 981
[18] Chiang H D, Dobson I, Thomas R J, Thorp J S and Fekih Ahmed L 1990 IEEE Trans. Power Syst. 5 601
[19] Ohta H and Ueda Y 2002 Chaos, Solitons & Fractals 14 1227
[20] Dobson I, Chiang H D, Thorp J S and Fekih Ahmed L 1988 IEEE Proc. 27th Conference on Control and Decision (Austin, TX, December 1998)
[21] Wang H O, Abed E H and Hamdan A M A 1994 IEEE Trans. Circ. Syst. I 41 294
[22] Wei D, Luo X and Qin Y 2011 Nonlinear Dyn. 63 323
[23] Chen G R, Moiola J L and Wang H O 2000 J. Bifur. Chaos Appl. Sci. Eng. 10 511
[24] Liu Y, Yan Z, Ni Y and Wu F F 2004 Electric Power Systems Research 70 163
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|