Chin. Phys. Lett.  2012, Vol. 29 Issue (3): 030501    DOI: 10.1088/0256-307X/29/3/030501
GENERAL |
Noise-Induced Voltage Collapse in Power Systems
WEI Du-Qu1**, LUO Xiao-Shu1, ZHANG Bo2
1College of Electronic Engineering, Guangxi Normal University, Guilin 541004
2College of Electric Power, South China University of Technology, Guangzhou 510640
Cite this article:   
ZHANG Bo, WEI Du-Qu, LUO Xiao-Shu 2012 Chin. Phys. Lett. 29 030501
Download: PDF(861KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate numerically the influences of Gaussian white noise on the dynamical behaviors of power systems. The studied model is a three-bus system at some specific parameters, and it demonstrates a stable regime that is far from collapse. It is found that with the increasing noise intensity σ, power systems become unstable and fall into oscillations; as σ is further increased, noise-induced voltage collapse in power systems takes place. Our results confirm that the presence of noise has a detrimental effect on power system operation. Furthermore, the possible mechanism behind the action of noise is addressed based on a dynamical approach where the bifurcation of the system is analyzed. Our results may provide useful information for avoiding instability problems in power systems.
Keywords: 05.45.-a      05.40.-a      73.50.Td     
Received: 22 October 2011      Published: 11 March 2012
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  73.50.Td (Noise processes and phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/3/030501       OR      https://cpl.iphy.ac.cn/Y2012/V29/I3/030501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Bo
WEI Du-Qu
LUO Xiao-Shu
[1] Guo F, Zhou Y R and Zhang Y 2010 Chin. Phys. Lett. 27 090506
[2] Yang Z L, Gao Y, Gao Y T and Zhang J 2009 Chin. Phys. Lett. 26 060506
[3] Ma J, Yang L J, Wu Y and Zhang C R 2010 Commun. Theor. Phys. 54 583
[4] Hasegawa H 2008 Physica D 237 137
[5] Mallick K and Marcq P 2003 Eur. Phys. J. B 36 119
[6] Billings L, Schwartz I B, Morgan D S, Bollt E M, Meucci R and Allaria E 2004 Phys. Rev. E 70 026220
[7] Mankin R, Laas T, Sauga A and Ainsaar A 2006 Phys. Rev. E 74 021101
[8] Xu B, Lai Y C, Zhu L and Do Y 2003 Phys. Rev. Lett. 90 164101
[9] Tel T, Lai Y C and Gruiz M 2008 Int. J. Bifur. Chaos Appl. Sci. Eng. 18 509
[10] Patnaik P R 2005 Chaos, Solitons & Fractals 26 759
[11] Yu Y N 1983 Electric Power System Dynamics (New York: Academic)
[12] Carreras B A, Lynch V E, Dobson I and Newman D E 2002 Chaos 12 985
[13] Kinney R, Crucitti P, Albert R and Latora V 2005 Eur. Phys. J. B 46 101
[14] Kundur P 1993 Power System Stability and Control (New York: McGraw, Hill)
[15] Ji W and Venkatasubramanian V 1999 IEEE Tran. Cir. Syst. I 46 405
[16] Filatrella G, Nielsen A H and Pedersen N F 2008 Eur. Phys. J. B 61 485
[17] Kwatny H G and Bahar L Y 1986 IEEE Trans. Circ. Syst. 33 981
[18] Chiang H D, Dobson I, Thomas R J, Thorp J S and Fekih Ahmed L 1990 IEEE Trans. Power Syst. 5 601
[19] Ohta H and Ueda Y 2002 Chaos, Solitons & Fractals 14 1227
[20] Dobson I, Chiang H D, Thorp J S and Fekih Ahmed L 1988 IEEE Proc. 27th Conference on Control and Decision (Austin, TX, December 1998)
[21] Wang H O, Abed E H and Hamdan A M A 1994 IEEE Trans. Circ. Syst. I 41 294
[22] Wei D, Luo X and Qin Y 2011 Nonlinear Dyn. 63 323
[23] Chen G R, Moiola J L and Wang H O 2000 J. Bifur. Chaos Appl. Sci. Eng. 10 511
[24] Liu Y, Yan Z, Ni Y and Wu F F 2004 Electric Power Systems Research 70 163
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[4] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 030501
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 030501
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 030501
[11] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 030501
[12] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 030501
[13] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 030501
[14] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 030501
[15] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 030501
Viewed
Full text


Abstract