GENERAL |
|
|
|
|
Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy |
LI Nian-Qiang**, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long |
Center for Information Photonics & Communications, School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031
|
|
Cite this article: |
YAN Lian-Shan, XU Ming-Feng, TANG Yi-Long et al 2012 Chin. Phys. Lett. 29 030502 |
|
|
Abstract Symbolic transfer entropy (STE) is employed to quantify the dominant direction of information flow between two chaotic-semiconductor-laser time series. The information flow in unidirectionally and bidirectionally coupled systems was analyzed systematically. Numerical results show that the dependence relationship can be revealed if there exists any coupling between two chaotic semiconductor lasers. More importantly, in both unsynchronized and good synchronization regimes, the STE can be used to quantify the direction of information flow between the lasers, although the former case leads to a better identification. The results thus establish STE as an effective tool for quantifying the direction of information flow between chaotic-laser-based systems.
|
Keywords:
05.45.Jn
05.45.Xt
05.45.Tp
42.55.Px
|
|
Received: 27 July 2011
Published: 11 March 2012
|
|
PACS: |
05.45.Jn
|
(High-dimensional chaos)
|
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
05.45.Tp
|
(Time series analysis)
|
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
|
|
|
[1] Sánchez Díaz A, Mirasso C R, Colet P and García Fernández P 1999 IEEE J. Quantum Electron. 35 292
[2] Lee M W and Shore K A 2006 IEEE Photon. Technol. Lett. 18 169
[3] Zhang W L, Pan W, Luo B, Zou X H, Wang M Y and Zhou Z 2008 Opt. Lett. 33 237
[4] Locquet A, Masoller C, Mégret P and Blondel M 2002 Opt. Lett. 27 31
[5] Jiang N, Pan W, Luo B, Yan L S, Xiang S Y, Yang L, Zheng D and Li N Q 2010 Phys. Rev. E 81 066217
[6] Yang L Z, Zhang X J, Wang A B, Guo D M and Wang Y C 2008 Chin. Phys. Lett. 25 3883
[7] Guo X F and Li J M 2011 Chin. Phys. Lett. 28 120503
[8] Mossa Al Sawalha M and Noorani M S M 2011 Chin. Phys. Lett. 28 110507
[9] Schiff SJ, So P, Chang T, Burke R E and Sauer T 1996 Phys. Rev. E 54 6708
[10] Quian Quiroga R, Arnhold J and Grassberger P 2000 Phys. Rev. E 61 5142
[11] Granger C 1969 Econometrica 37 424
[12] Dhamala M, Rangarajan G and Ding M 2008 Phys. Rev. Lett. 100 018701
[13] Hlavackova Schindler K, Palus M, Vejmelka M and Bhattacharya J 2007 Phys. Rep. 441 1
[14] Frenzel S and Pompe B 2007 Phys. Rev. Lett. 99 204101
[15] Schreiber T 2000 Phys. Rev. Lett. 85 461
[16] Staniek M and Lehnertz K 2008 Phys. Rev. Lett. 100 158101
[17] Kowalski A M, Martin M T, Zunino L, Plastino A and Casas M 2010 Entropy 12 148
[18] Vicente R, Dauden J, Colet P and Toral R 2005 IEEE J. Quantum Electron. 41 541
[19] Kugiumtzis D 2009 The 3rd International Conference on Complex Systems and Applications, Conference Proceedings, Special Sessions (Le Havre, France, 29 June–2 July 2009) p 338
[20] Bandt C and Pompe B 2002 Phys. Rev. Lett. 88 174102
[21] Bahraminasab A, Ghasemi F, Stefanovska A, McClintoc P V E and Kantz H 2008 Phys. Rev. Lett. 100 084101
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|