Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 024601    DOI: 10.1088/0256-307X/28/2/024601
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Scaled Underwater Launch System Accomplished by Stress Wave Propagation Technique
WEI Yan-Peng1**, WANG Yi-Wei1, FANG Xin2, HUANG Chen-Guang1, DUAN Zhu-Ping2
1Key Laboratory of Hydrodynamics and Ocean Engineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
2The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
WEI Yan-Peng, WANG Yi-Wei, FANG Xin et al  2011 Chin. Phys. Lett. 28 024601
Download: PDF(869KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A scaled underwater launch system based on the stress wave theory and the slip Hopkinson pressure bar (SHPB) technique is developed to study the phenomenon of cavitations and other hydrodynamic features of high-speed submerged bodies. The present system can achieve a transient acceleration in the water instead of long-time acceleration outside the water. The projectile can obtain a maximum speed of 30 m/s in about 200 μs by the SHPB launcher. The cavitation characteristics in the stage of acceleration and deceleration are captured by the high-speed camera. The processes of cavitation inception, development and collapse are also simulated with the business software FLUENT, and the results are in good agreement with experiment. There is about 20–30% energy loss during the launching processes, the mechanism of energy loss is also preliminary investigated by measuring the energy of the incident bar and the projectile.
Keywords: 46.40.Cd      47.55.Dp     
Received: 03 September 2010      Published: 30 January 2011
PACS:  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
  47.55.dp (Cavitation and boiling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/024601       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/024601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEI Yan-Peng
WANG Yi-Wei
FANG Xin
HUANG Chen-Guang
DUAN Zhu-Ping
[1] Batchelor G K and Moffatt H K 2001 Appl. Mech. Rev. 54 B89
[2] Zhang D, Liu Z P and Xiang Y P 2008 Int. J. Hydrogen. Energ. 33 7197
[3] Masri R and Durban D 2008 Int. J. Impact. Eng. 36 830
[4] LEI X W and ZHAO X Y 2009 Chin. Phys. Lett. 26 016401
[5] Wang Y C and Chen Y W 2007 Exp. Therm. Fluid. Sci. 32 403
[6] Park J T and Cutbirth J M 2003 J. Fluids Eng. 127 1210
[7] Leroux J B and Billard J Y 2004 J. Fluids Eng. 126 94
[8] Zhang X W and Wei Y J 2007 J. Hydrodyn. 19 564
[9] Cheng Y S and Liu H 2007 J. Hydrodyn. 19 403
[10] Ogawa K 2007 Int. J. Mod. Phys. B 22 1269
[11] Liu K X and Li X D 2006 Chin. Phys. Lett. 23 3045
[12] Singhal A K and Athavale M M 2001 J. Fluids Eng. 124 617
Related articles from Frontiers Journals
[1] Hagar Alm El-Din, ZHANG Yu-Sheng, Medhat Elkelawy. A Computational Study of Cavitation Model Validity Using a New Quantitative Criterion[J]. Chin. Phys. Lett., 2012, 29(6): 024601
[2] WANG Yi-Ze, LI Feng-Ming. Band Gap Properties of Magnetoelectroelastic Grid Structures with Initial Stress[J]. Chin. Phys. Lett., 2012, 29(3): 024601
[3] WANG Yi-Wei, HUANG Chen-Guang, DU Te-Zhuan, WU Xian-Qian, FANG Xin, LIANG Nai-Gang, WEI Yan-Peng**. Shedding Phenomenon of Ventilated Partial Cavitation around an Underwater Projectile[J]. Chin. Phys. Lett., 2012, 29(1): 024601
[4] WEN Ji-Hong**, SHEN Hui-Jie, YU Dian-Long, WEN Xi-Sen . Theoretical and Experimental Investigation of Flexural Wave Propagating in a Periodic Pipe with Fluid-Filled Loading[J]. Chin. Phys. Lett., 2010, 27(11): 024601
[5] JIN Yan-Fang, XIONG Chun-Yang, FANG Jing, FERRARI Mauro. Characterization of Wave Dispersion in Viscoelastic Cellular Assemblies by Doublet Mechanics[J]. Chin. Phys. Lett., 2009, 26(8): 024601
[6] LIN Yan-Ting, REN Bo, ZHAO Xiang-Yong, WANG Fei-Fei, WANG Yao-Jin, XU Hai-Qing, LIN Di, LUO Hao-Su. Optical Dispersion Behavior and Band Gap Energy of Relaxor Ferroelectric 0.92Pb(Mg1/3Nb2/3)O3-0.08PbTiO3 Single Crystal[J]. Chin. Phys. Lett., 2009, 26(7): 024601
[7] NIE Jian-Xin, YANG Ding-Hui. Viscoelastic BISQ Model for Low-Permeability Sandstone with Clay[J]. Chin. Phys. Lett., 2008, 25(8): 024601
[8] WEN Ji-Hong, YU Dian-Long, WANG Gang, ZHAO Hong-Gang, LIU Yao-Zong, WEN Xi-Sen. Directional Propagation Characteristics of Flexural Waves in Two-Dimensional Thin-Plate Phononic Crystals[J]. Chin. Phys. Lett., 2007, 24(5): 024601
[9] WEN Zhen-Ying, WANG Shun-Jin, ZHANG Xiu-Ming, LI Lei. Solitary Wave Interactions in Granular Media[J]. Chin. Phys. Lett., 2007, 24(10): 024601
[10] HU Guo-Qi, ZHANG Xun-Sheng, BAO De-Song, TANG Xiao-Wei. Double-Humped Transverse Density Profile in Two-Dimensional Chute Flow with Rough Sidewalls[J]. Chin. Phys. Lett., 2006, 23(3): 024601
[11] YU Dian-Long, LIU Yao-Zong, QIU Jing, ZHAO Hong-Gang, LIU Zhi-Ming,. Experimental and Theoretical Research on the Vibrational Gaps in Two-Dimensional Three-Component Composite Thin Plates[J]. Chin. Phys. Lett., 2005, 22(8): 024601
[12] LIU Zhi-Ming, YANG Sheng-Liang, ZHAO Xun,. Ultrawide Bandgap Locally Resonant Sonic Materials[J]. Chin. Phys. Lett., 2005, 22(12): 024601
[13] JIN Yan-Fang, ZHANG Jue, FANG Jing, Mauro Ferrari. Dispersion Analysis of Wave Propagation in Cubic--Tetrahedral Assembly by Doublet Mechanics[J]. Chin. Phys. Lett., 2004, 21(8): 024601
[14] ZHAO Ya-Pu, ZHAO Han, HU Yu-Qun,. Stress Wave Propagation in a Gradient Elastic Medium[J]. Chin. Phys. Lett., 2002, 19(7): 024601
[15] CHENG Yuan-Feng, YANG Ding-Hui, YANG Hui-Zhu. Biot/Squirt Model in Viscoelastic Porous Media[J]. Chin. Phys. Lett., 2002, 19(3): 024601
Viewed
Full text


Abstract